
 1999 Microchip Technology Inc. DS00726A-page 1

INTRODUCTION

The specification of the PIC18CXXX Architecture was
done with several goals. One of the most important of
these goals was code compatibility with existing
PICmicro® families. This goal eases the migration from
one product family to the PIC18CXXX family.

For customers that are designing a new application that
is based on an existing PICmicro device, but require
added functionality (memory space, performance,
peripheral features, ...), having source code compatibil-
ity is very useful (eases the development).

This application note looks at what may need to be
addressed when migrating an application from a
PIC17CXXX device to a PIC18CXXX device. It will not
address the details of layout issues due to the different
pinouts between these two families.

So looking at the issues for a code conversion, the fol-
lowing few points need to be inspected:

• Module Differences
• Memory Map Differences

- Program Memory Map

- Data Memory Map
• Instruction Execution Differences
• Architectural Modifications (such as Table Read

and Table Write implementation)

Like any conversion project, the ease of the conversion
is influenced by the way the initial project was imple-
mented, such as using the register names and bit
names from the data sheet (supplied in the Microchip
include file). This along with other good programming
techniques (symbolic code, documentation, ...) do a lot
to ease the effort in a conversion project.

MODULE DIFFERENCES

First, one needs to understand what are the differences
between the modules. Then the code can be evaluated
to see if there are any changes required due to these
differences. Some modules are functionally compatible
and should only require minor changes due to the
differences of the program and data memory maps of
the devices. Other modules have differences due to the
decision to keep module compatibility with the
PICmicro Mid-Range family.

The following PIC17CXXX modules are upward com-
patible to the PIC18CXXX module. This means that the
status and control bits are in the same registers at the
same bit position. The PIC18CXXX module may have
some additional control bits for the added features, but
as long as the PIC17CXXX unimplemented bits were
written as’0’, the modules will operate in the same
modes. PIC17CXXX modules that should not require
source code modification to function on the
PIC18CXXX family include:

• MSSP

• USART
• Hardware 8 x 8 Multiply

PIC17CXXX modules that will require some source
code modification to function on the PIC18CXXX family
include:

• 10-Bit A/D

• Timer0

PIC17CXXX modules that will require extensive source
code modification to function on the PIC18CXXX family
include:

• Timer 1
• Timer 2

• Timer 3
• Capture
• PWM

• In-Circuit Serial Programming (ICSP™)

Author: Mark Palmer
Microchip Technology Inc.

AN726
PIC17CXXX to PIC18CXXX Migration

AN726

DS00726A-page 2  1999 Microchip Technology Inc.

A/D module

The PIC18CXXX 10-bit A/D module was specified to be
compatible with the PIC16CXXX 10-bit A/D module.
This means that there are some differences in the loca-
tion of the status/control bits in the ADCON0 and
ADCON1 registers. Table 1 shows which A/D control
registers the bits reside in, and the comments indicate
if the bit position changed or if it is in a different register.

Migration Impact

Code written for the PIC17C7XX 10-bit A/D mod-
ule will require changes due to the remapping of
the bit locations, as well as the differences for the
program and data memory maps of the devices.
The functionality of the module did not change, so
the timing requirements should not need any mod-
ifications.

CCP Special Event Trigger

The CCP Special Event Trigger allows the com-
pare action to start an A/D conversion. This feature
is not present on the PIC17C7XX family and is an
enhancement that does not affect code migration
to the PIC18CXXX family.

TABLE 1: 10-BIT A/D BIT COMPATIBILITY

Note: Please refer to the device data sheet
for timing specifications to ensure
applicability.

Bit
PIC17CXXX

Register
PIC18CXX2

Register
Comments

ADON ADCON0 ADCON0 — (1)

GO/DONE ADCON0 ADCON0 — (1)
CHS3 ADCON0 N.A. PIC18CXX2 has up to 8 analog input channels.

PIC17C7XX has up to 16 analog input channels.
CHS2 ADCON0 ADCON0 New bit position
CHS1 ADCON0 ADCON0 New bit position

CHS0 ADCON0 ADCON0 New bit position
ADCS2 N.A. ADCON1 PIC18CXX2 has 3 new A/D Conversion Clock selections:

FOSC/2, FOSC/4, and FOSC/16
ADCS1 ADCON1 ADCON0 Moved to different register
ADCS0 ADCON1 ADCON0 Moved to different register

ADFM ADCON1 ADCON1 New bit position
PCFG3 ADCON1 ADCON1 — (1)
PCFG2 ADCON1 ADCON1 — (1)

PCFG1 ADCON1 ADCON1 — (1)
PCFG0 ADCON1 ADCON1 — (1)

Note 1: No change required

AN726

 1999 Microchip Technology Inc. DS00726A-page 3

USART module

The PIC17CXXX has a USART module, while the
PIC18CXXX has an Addressable USART (AUSART)
module. The AUSART module is based on the
PIC16CXXX family AUSART module, which has the
high baud rate feature. All bits for the PIC17CXXX
USART module have the same register names and the
same bit position as the PIC18CXXX AUSART module.
The AUSART module has two additional bits, the High
Baud Rate Select (BRGH) bit and the Address Detect
Enable (ADDEN) bit.

Table 2 shows the Addressable USART Register com-
patibility.

Migration Impact

Code written for the PIC17CXXX USART module
should only require changes due to the differences
for the program and data memory maps of the
devices, but not due to the functionality of the mod-
ule. The default state of the BRGH and ADDEN
bits after a Power-on Reset allows compatibility
with the PIC17CXXX USART module. Ensure that
your code did not modify the state of these bits
from the default state of ’0’.

TABLE 2: ADDRESSABLE USART COMPATIBILITY

Bit
PIC17CXXX

Register
PIC18CXX2

Register
Comments

CSRC TXSTA TXSTA — (1)
TX9 TXSTA TXSTA — (1)

TXEN TXSTA TXSTA — (1)
SYNC TXSTA TXSTA — (1)
BRGH N.A. TXSTA New bit

TRMT TXSTA TXSTA — (1)
TX9D TXSTA TXSTA — (1)
SPEN RCSTA RCSTA — (1)

RX9 RCSTA RCSTA — (1)
SREN RCSTA RCSTA — (1)
CREN RCSTA RCSTA — (1)

ADDEN N.A. RCSTA New bit
FERR RCSTA RCSTA — (1)
OERR RCSTA RCSTA — (1)

RX9D RCSTA RCSTA — (1)
Note 1: No change required

AN726

DS00726A-page 4  1999 Microchip Technology Inc.

Timer0 module

This module was specified to allow an operational com-
patibility to both the PIC16CXXX and PIC17CXXX fam-
ilies. Compatibility is specified by some new control
bits. Table 3 shows the Timer0 Register compatibility.
Figure 1 shows the PIC17CXXX Timer0 Block Dia-
gram, while Figure 2 shows PIC18CXXX Timer0 Block
Diagram when in 16-bit timer mode (T08BIT is
cleared).

In the PIC17CXXX, the Timer0 module has the unique
characteristic of having its own interrupt vector
address. In PIC18CXXX devices, the Timer0 interrupt
is included with all the other peripheral interrupts. Code
conversions will need to take this into account.

Migration Impact

In the PIC18CXXX, the T08BIT selects if the
Timer0 module will operate as an 8-bit timer or a
16-bit timer. To make this compatible with the
PIC17CXXX implementation, the T08BIT must be
cleared by software to select the 16-bit timer mode
(the default state is set). When in the 16-bit timer
mode, the 16-bit reads are now buffered. The
TMR0H register is a buffered register that is
loaded/written with an access to the TMR0L regis-
ter. This allows removal of any software routines
that were used to ensure a proper 16-bit read.

The PIC18CXXX PreScaler Assignment (PSA) bit
selects if the prescaler is to be used. The default is
prescaler not used, giving the same default
prescale assignment as the PIC17CXXX Timer0.
If the PSA bit is cleared, the prescaler is used.
With the default state of the T0PS2:T0PS0 bits,
the prescale assignment is 1:256. To assign this
value to the PIC17CXXX, T0PS3 would need to be
set and the T0PS2:T0PS0 bits would be don’t
care. For the PIC18CXXX, when the prescaler is
selected all T0PS2:T0PS0 bits have meaning.

The PIC17CXXX Timer0 Interrupt vector address
is no longer a dedicated location in the
PIC18CXXX. The interrupt service routine is now
required to test the TMR0IF bit as a potential inter-
rupt source. Interrupt latency can be addressed by
partitioning the interrupt sources between the high
and low priority interrupt vector addresses. This
technique is application dependent.

TABLE 3: TIMER0 REGISTER COMPATIBILITY

Bit
PIC17CXXX

Register
PIC18CXX2

Register
Comments

TMR0ON N.A. T0CON New bit to start Timer0 incrementing
T08BIT N.A. T0CON New bit to configure timer in 16-bit mode

T0CS T0STA T0CON New register
T0SE T0STA T0CON New register and bit position
PSA N.A. T0CON New register and bit position

T0PS3 T0STA N.A. — (1)
T0PS2 T0STA T0CON New register and bit position
T0PS1 T0STA T0CON New register and bit position

T0PS0 T0STA T0CON New register and bit position
INTEDG T0STA N.A. — (1)

Note 1: This bit name is not applicable to the PIC18CXXX family.

AN726

 1999 Microchip Technology Inc. DS00726A-page 5

FIGURE 1: PIC17CXXX TIMER0 MODULE BLOCK DIAGRAM

FIGURE 2: PIC18CXXX TIMER0 MODULE BLOCK DIAGRAM

RA1/T0CKI Synchronization
Prescaler
(8 stage
async ripple
counter)

T0SE

FOSC/4

T0CS T0PS3:T0PS0 Q2 Q4

0

1
TMR0H<8> TMR0L<8>

Interrupt on overflow
sets T0IF

4

PSOUT

Note 1: Upon reset, Timer0 is enabled in 8-bit mode with clock input from the T0CKI pin and the prescaler not selected (though prescaler
bits select the maximum prescale count (1:256).

T0CKI pin

T0SE

0

1

0

1

T0CS

Fosc/4

Programmable
Prescaler

Sync with
Internal
clocks

TMR0L

(2 TCY delay)

PSOUT

Data bus<7:0>

8

PSA
T0PS2, T0PS1, T0PS0

Set interrupt
flag bit TMR0IF

on overflow

3

TMR0

TMR0H

 High Byte

8
8

8

Read TMR0L

Write TMR0L

AN726

DS00726A-page 6  1999 Microchip Technology Inc.

Timer1 module

The implementation of the PIC17CXXX Timer1 module
is completely different from that on the PIC18CXXX.
The module used on the PIC18CXXX family is the
same implementation as the Timer1 module found on
the PIC16CXXX with some enhancements. This mod-
ule now allows a true implementation of a Real Time
Clock circuit.

Figure 3 shows the Timer1 block diagrams for the
PIC17CXXX. Operation in both the 8-bit and 16-bit
modes are shown.

Figure 4 shows the Timer1 block diagram for the
PIC18CXXX.

Migration Impact

This module requires a source code rewrite.

FIGURE 3: PIC17CXXX TIMER1 BLOCK DIAGRAMS

FOSC/4

RB4/TCLK12

TMR1ON

TMR1CS

TMR1

PR1

Reset

Equal

Set TMR1IF

0

1

Comparator<8>Comparator x8

RB4/TCLK12
FOSC/4

TMR1ON

TMR1CS
TMR1 x 8

PR1 x 8

Reset

EqualSet TMR1IF

1

0

Comparator<8>Comparator x16

TMR2 x 8

PR2 x 8

MSB LSB

16-Bit Mode

8-Bit Mode

AN726

 1999 Microchip Technology Inc. DS00726A-page 7

FIGURE 4: PIC18CXXX TIMER1 MODULE BLOCK DIAGRAM

 Timer 1 TMR1L

T1OSC
T1SYNC

TMR1CS

T1CKPS1:T1CKPS0

SLEEP input

T1OSCEN
Enable
Oscillator(1)

TMR1IF
Overflow
Interrupt

Fosc/4
Internal
Clock

TMR1ON
on/off

Prescaler
1, 2, 4, 8

Synchronize

det

1

0

0

1

Synchronized
Clock Input

2

T13CKI/T1OSO

T1OSI

TMR1

Flag Bit

Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates
power drain.

high byte

Data Bus<7:0>

8

TMR1H

8
8

8

Read TMR1L

Write TMR1L

8

AN726

DS00726A-page 8  1999 Microchip Technology Inc.

Timer2 module

The implementation of the PIC17CXXX Timer2 module
is completely different from that on the PIC18CXXX.
The module used on the PIC18CXXX family is the
same implementation as the Timer2 module found on
the PIC16CXXX.

Figure 5 shows the Timer2 block diagrams for the
PIC17CXXX. Operation in both the 8-bit and 16-bit
modes are shown.

Figure 6 shows the Timer2 block diagram for the
PIC18CXXX.

Migration Impact

This module requires a source code rewrite.

FIGURE 5: PIC17CXXX TIMER2 BLOCK DIAGRAMS

FIGURE 6: PIC18CXXX TIMER2 MODULE BLOCK DIAGRAM

RB4/TCLK12 FOSC/4 TMR2ON

TMR2CS

TMR2

PR2

Reset

Equal

Set TMR2IF

1

0

Comparator<8>Comparator x8

RB4/TCLK12
FOSC/4

TMR1ON

TMR1CS
TMR1 x 8

PR1 x 8

Reset

EqualSet TMR1IF

1

0

Comparator<8>Comparator x16

TMR2 x 8

PR2 x 8

MSB LSB

8-Bit Mode

16-Bit Mode

Comparator

TMR2
Sets flag

TMR2

output (1)

Reset

Postscaler

Prescaler

PR2

2

FOSC/4

1:1 1:16

1:1, 1:4, 1:16

EQ

4

bit TMR2IF

Note 1: TMR2 register output can be software selected by the MSSP Module as a baud clock.

to

TOUTPS3:TOUTPS0

T2CKPS1:T2CKPS0

AN726

 1999 Microchip Technology Inc. DS00726A-page 9

Timer3 module

The implementation of the PIC17CXXX Timer3 module
is completely different from that on the PIC18CXXX.
The module used on the PIC18CXXX family is the
same implementation as the Timer1 module found on
the PIC16CXXX, with some enhancements. This mod-
ule now allows a true implementation of a Real Time
Clock circuit.

Figure 7 is the block diagram of the PIC17CXXX
Timer3 with three capture registers and one period reg-
ister. Figure 8 is the block diagram of the PIC17CXXX
Timer3 with four capture registers. As can be seen from
these diagrams, the Timer3 module is tightly linked with
the capture feature of the PIC17CXXX. In the
PIC18CXXX, the capture feature is a software pro-
grammable mode of the CCP module.

Figure 9 is a block diagram of the PIC18CXXX Timer3
module.

Migration Impact

This module requires a source code rewrite.

FIGURE 7: PIC17CXXX TIMER3 WITH THREE CAPTURE AND ONE PERIOD REGISTER BLOCK
DIAGRAM

PR3H/CA1H

TMR3H

Comparator<8>
FOSC/4

TMR3ON

Reset
Equal0

1

Comparator x16

RB5/TCLK3

Set TMR3IF
TMR3CS

PR3L/CA1L

TMR3L

CA2H CA2LRB1/CAP2

Edge select,
Prescaler select

2

Set CA2IF

Capture2

CA2ED1: CA2ED0

 Enable

CA3H CA3LRG4/CAP3

Edge select,
Prescaler select

2

Set CA3IF

Capture3

CA3ED1: CA3ED0

 Enable

CA4H CA4LRE3/CAP4

Edge select,
Prescaler select

2

Set CA4IF

Capture4

CA4ED1: CA4ED0

 Enable

AN726

DS00726A-page 10  1999 Microchip Technology Inc.

FIGURE 8: PIC17CXXX TIMER3 WITH FOUR CAPTURES BLOCK DIAGRAM

FIGURE 9: PIC18CXXX TIMER3 MODULE BLOCK DIAGRAM

RB0/CAP1

Edge Select,
Prescaler Select

PR3H/CA1H PR3L/CA1L

RB1/CAP2

RG4/CAP3

Edge Select,
Prescaler Select

2

Set CA1IF
Capture1 Enable

TMR3ON
TMR3CS

0

1

Set TMR3IF

Edge Select,
Prescaler Select

CA2H CA2L

Set CA2IF

CA3H CA3L

Set CA3IF

CA1ED1, CA1ED0

FOSC/4

RB5/TCLK3

Capture2 Enable

Capture3 Enable

CA2ED1, CA2ED0

2

CA3ED1: CA3ED0

TMR3H TMR3L

2

RE3/CAP4

Edge Select,
Prescaler Select

2
CA4H CA4L

Set CA4IF
Capture4 Enable

CA4ED1: CA4ED0

Timer3
TMR3L

T1OSC
T3SYNC

TMR3CS
T3CKPS1:T3CKPS0

SLEEP input

T1OSCEN
Enable
Oscillator(1)

Fosc/4
Internal
Clock

TMR3ON
on/off

Prescaler
1, 2, 4, 8

Synchronize

det

1

0

0

1

Synchronized
Clock input

2

T1OSO/

T1OSI

TMR3

T13CKI

CLR

CCP Special Trigger
T3CCPx

To Timer1 Clock Input

Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.

High Byte

DataBus<7:0>

8

TMR3H

8
8

8

Read TMR3L

Write TMR3L

Set TMR3IF flag bit
on overflow

8

AN726

 1999 Microchip Technology Inc. DS00726A-page 11

Capture/Compare/PWM modules

The PIC18CXXX family uses CCP modules. This is
compatible with PIC16CXXX family devices. The
PIC17CXXX allows more features to be used concur-
rently (3 PWM outputs and 4 capture inputs), while the
PIC18CXX2 devices have 2 CCP modules. Table 4
shows the timer resources that are usable for the Time
Based Operation feature selected.

TABLE 4: TIMER RESOURCES FOR TIME
BASED OPERATION
FEATURES

PWM Operation

In the PIC17CXXX, the PWM time base can be set
to either Timer1 or Timer2. These timers both have
the capability to have their clock source derived
from the external pin TCLK12. The PIC18CXXX
PWM must always use Timer2 as the time base
with the clock source from the internal device
clock. Table 5 shows the registers used to specify
the PWM duty cycle between the two families.

Figure 10 is a block diagram of the PIC17CXXX
PWM. Timer1 or Timer2 may be used as the time
base for the PWM outputs.

Figure 11 is a block diagram of the PIC18CXXX
PWM. Timer2 is the time base for all PWM out-
puts.

TABLE 5: DUTY CYCLE REGISTERS

FIGURE 10: PIC17CXXX PWM BLOCK
DIAGRAM

FIGURE 11: PIC18CXXX PWM BLOCK
DIAGRAM

MIGRATION IMPACT

Migrating code from the PIC17CXXX family to the
PIC18CXXX family will require a rewrite of the source
code to function. Since the CCP module is software
programmable to operate in any of the three modes, the
total number of PWM outputs may not match what is
provided by the PIC17CXXX.

Time Based
Feature

PIC17CXXX PIC18CXXX

Capture Timer3 Timer1 or Timer3

Compare N.A. Timer1 or Timer3
PWM Timer1 or Timer2 Timer2

Device
PWM Duty Cycle Bits

DC9:DC2 DC1:DC0

PIC17CXXX PWxDCH PWxDCL<7:6>
PIC18CXXX CCPRxL CCPxCON<5:4>

PWxDCH

Duty Cycle registers PWxDCL<7:6>

Clear Timer,
PWMx pin and
Latch D.C.

(Slave)

Comparator

TMRx

Comparator

PRy

(Note 1)

R

S

Q

PWMxON

 PWMx

Note 1: 8-bit timer is concatenated with 2-bit internal Q clock
or 2 bits of the prescaler to create 10-bit time-base.

Read

Write

CCPR1L

CCPR1H (Slave)

Comparator

TMR2

Comparator

PR2

(Note 1)

R Q

S

Duty cycle registers CCP1CON<5:4>

Clear Timer,
CCP1 pin and
latch D.C.

TRISC<2>

RC2/CCP1

Note: 8-bit timer is concatenated with 2-bit internal Q clock
or 2 bits of the prescaler to create 10-bit timebase.

AN726

DS00726A-page 12  1999 Microchip Technology Inc.

Capture Operation

In the PIC17CXXX family, the capture feature is
tightly linked with the Timer3 module. Figure 7 and
Figure 8 show the capture block diagrams.

Figure 12 is the PIC18CXXX Capture Operation
Block Diagram. In the PIC18CXXX, the capture
feature is a software programmable mode of the
CCP module.

MIGRATION IMPACT

Migrating code from the PIC17CXXX family to the
PIC18CXXX family will require a rewrite of the source
code to function. Since the CCP module is software
programmable to operate in any of the three modes, the
total number of capture inputs may not match what is
provided by the PIC17CXXX.

FIGURE 12: PIC18CXXX CAPTURE OPERATION (WITH TIMER1 AND TIMER3)

CCPR1H CCPR1L

TMR1H TMR1L

Set flag bit CCP1IF
TMR3
Enable

Q’s
CCP1CON<3:0>

CCP1 Pin

Prescaler
³ 1, 4, 16

and
edge detect

TMR3H TMR3L

TMR1
Enable

T3CCP2

T3CCP2

CCPR2H CCPR2L

TMR1H TMR1L

Set flag bit CCP2IF

TMR3
Enable

Q’s
CCP2CON<3:0>

CCP2 Pin

Prescaler
³ 1, 4, 16

and
edge detect

TMR3H TMR3L

TMR1
Enable

T3CCP2
T3CCP1

T3CCP2
T3CCP1

AN726

 1999 Microchip Technology Inc. DS00726A-page 13

Compare Operation

The PIC17CXXX family does not support a com-
pare operation. This is an enhancement for the
PIC18CXXX family. Figure 13 shows the operation
of the PIC18CXXX compare mode. Two compare
values can be initialized, and they can be used to
compare against either Timer1 or Timer3.

MIGRATION IMPACT

This feature of the CCP module is an enhancement to
the PIC17CXXX devices.

FIGURE 13: PIC18CXXX COMPARE OPERATION (WITH TIMER1 AND TIMER3)

CCPR1H CCPR1L

TMR1H TMR1L

Comparator
Q S

R

Output
Logic

Special Event Trigger

Set flag bit CCP1IF

matchRC2/CCP1

TRISC<2>
CCP1CON<3:0>
Mode Select

Output Enable

Pin

Special Event Trigger will:
Reset Timer1or Timer3, but not set Timer1 or Timer3 interrupt flag bit,
and set bit GO/DONE (ADCON0<2>)
which starts an A/D conversion (CCP2 only)

TMR3H TMR3L

T3CCP2

CCPR2H CCPR2L

Comparator

10

T3CCP2
T3CCP1

Q S

R

Output
Logic

Special Event Trigger

Set flag bit CCP2IF

matchRC1/CCP2

TRISC<1>
CCP2CON<3:0>
Mode Select

Output Enable

Pin

0 1

AN726

DS00726A-page 14  1999 Microchip Technology Inc.

Master SSP Module

The PIC17CXXX MSSP module is upwardly compati-
ble with the PIC18CXXX MSSP module. The
PIC18CXXX MSSP module also includes two modes
that are present in the PIC16CXXX SSP module.
These are the modes:

1. I2C slave mode, 7-bit address with start and stop
bit interrupts enabled

2. I2C slave mode, 10-bit address with start and
stop bit interrupts enabled

These modes were retained for ease of code migration
from PIC16CXXX devices to the PIC18CXXX family.

Migration Impact

Code written for the PIC17CXXX MSSP module
should only require changes due to the differences
in the program and data memory maps of the
devices, but not due to the functionality of the mod-
ule.

External Interrupts

For the PIC17CXXX, the INT interrupt had its own vec-
tor address. In the PIC18CXXX, it is part of the periph-
eral interrupts vector address. This means that the INT
interrupt code will need to be moved into the general
peripheral interrupt service routine (ISR), and this rou-
tine will need to add a check for the INT interrupt
source.

The PIC18CXXX family has some enhancements for
the external interrupts. First, there are now three exter-
nal interrupt pins, as opposed to one pin in the
PIC17CXXX family. Second, enhancements to the
architecture of the interrupt logic allows additional
capability (High/Low priority). These enhancements
are discussed in the section “Architectural Enhance-
ments” .

Migration Impact

The PIC17CXXX external interrupt requires minor
modifications to be used with the PIC18CXXX
devices.

PortB Interrupt-On-Change

The PORTB interrupt-on-change feature of the
PIC17CXXX family has all PORTB pins with the inter-
rupt on change feature. This feature was multiplexed
with other peripheral features such as Captures,
PWMs, Timer clock inputs, and SPI pins. The PORTB
interrupt on change feature of the PIC18CXXX family
matches that of our Mid-Range family. That is, there is
only an interrupt on change on the upper four port pins
of PORTB. There are no other peripheral feature multi-
plexed onto these pins.

Migration Impact

On the PIC18CXXX family, only RB7:RB4 have the
interrupt on change feature. These pins do not
have any peripheral feature multiplexed on them.

PORTB Weak Pull-up Enable

The control bit to enable the weak pull-ups on PORTB
have been moved from PORTB<7> (PIC17CXXX) to
INTCON2<7> (PIC18CXXX).

Migration Impact

Code changes are only required due to the differ-
ences of the data memory maps.

Hardware 8 x 8 Multiply

The operation of the 8 x 8 hardware multiply is identical
between the two families.

Migration Impact

Changes may only be required due to the differ-
ences of the data memory maps.

Brown-out Reset (BOR)

The Brown-out Reset (BOR) logic has been enhanced
in the PIC18CXXX family. The BOR trip point is now
programmable at time of device programming. One of
four trip points can be selected. The BOR trip points are
shown in Table 6.

Migration Impact

Since none of these trip points are specified at the
same voltage level as the trip point for the
PIC17CXXX family, some modifications may need
to be done with the application. These modifica-
tions may be software, hardware, or both.

TABLE 6: BOR TRIP POINT COMPARISON

Family
BOR Trip Point Option

4.5 V (min) 4.2 V (min) 4.0 V (typ) 2.7 V (min) 2.5 V (min)

PIC18CXXX Yes Yes — Yes Yes

PIC17CXXX — — Yes — —

AN726

 1999 Microchip Technology Inc. DS00726A-page 15

On-Chip Oscillator Circuit

The oscillator circuit has been modified to allow new
enhanced features, such as a Phase Lock Loop (PLL)
option) and clock switching to the Timer1 oscillator.
Clock switching allows the optimization of the applica-
tions power consumption, by only operating at high fre-
quency (high power) when the application software
requires that performance. It also allows the operation
at a lower frequency (low power) when application soft-
ware is not performance critical.

The oscillator options of the PIC18CXXX family allow
an extended frequency range compared to the
PIC17CXXX device. The oscillator mode that was
selected for the PIC17CXXX device may need to be
changed to operate the PIC18CXXX at the desired fre-
quency.

Table 7 shows a comparison of the oscillator selection
modes between the PIC17CXXX and the PIC18CXXX
devices. There are some modes where an additional
I/O pin becomes available to the device. These are the
RCIO and ECIO modes.

Migration Impact

Since the oscillator circuitry is different between
the two families, any external components that are
required need to be re-evaluated to ensure opera-
tion in the application.

MCLR

The MCLR operation is different between the two fam-
ilies. The MCLR operation of the PIC18CXXX family is
identical to the Mid-Range family. Please inspect elec-
trical specification parameter # 30 to understand the
implications in your system.

Migration Impact

Ensure that the differences in the electrical speci-
fications are met by the application circuit.

Power-On Reset (POR)

The Power-On Reset (POR) operation is different
between the two families. The POR operation of the
PIC18CXXX family is identical to the Mid-Range family
(for the same modes).

Migration Impact

Ensure that the differences in the Power-On Reset
timings are addressed by the hardware and soft-
ware of the application.

In-Circuit Serial Programming (ICSP)

The ICSP operation is different between the two fami-
lies. This relates to both the hardware interface as well
as the software protocol and timings.

Migration Impact

The new implementation method will need to be
accounted for in the design conversion.

TABLE 7: OSCILLATOR MODE SELECTION COMPARISON

Note: Oscillator operation should be verified
to ensure that it starts and performs as
expected. Adjusting the loading
capacitor values and/or the oscillator
mode may be required.

Frequency Range Oscillator Type
Oscillator Mode Selection

Comment
PIC17CXXX PIC18CXXX

DC - 4 MHz RC RC RC or RCIO —

DC - 200 kHz Crystal/Resonator LF LP —
200 KHz - 2 MHz Crystal/Resonator LF XT —
2 MHz - 4 MHz Crystal/Resonator XT XT —

4 MHz - 16 MHz Crystal/Resonator XT HS —
16 MHz - 25 MHz Crystal/Resonator XT HS or HS + PLL (1) —
25 MHz - 33 MHz Crystal/Resonator XT HS + PLL (2) —

33 MHz - 40 MHz Crystal/Resonator N.A. HS + PLL (3) —
DC - 33 MHz External Clock EC EC or ECIO —
33 - 40 MHz External Clock N.A. EC or ECIO —

Note 1: The external crystal would have a frequency of 4 MHz - 6.25 MHz.

Note 2: The external crystal would have a frequency of 6.25 MHz - 8.25 MHz.

Note 3: The external crystal would have a frequency of 8.25 MHz - 10 MHz.

AN726

DS00726A-page 16  1999 Microchip Technology Inc.

MEMORY MAP DIFFERENCES

The memory map affects instructions that are required
for program flow and addressing program and data
memory. The memory maps between the PIC17CXXX
and PIC18CXXX families are similar, but still require
discussion for the upward migration of application
code.

These are broken down into two discussions, one for
the Program Memory map and the other for the Data
Memory map.

Program Memory

The PIC17CXXX family can address 64-Kwords of pro-
gram memory (128-KBytes). This memory space is
broken up into 8 program memory pages of 8-Kwords.
The architecture required the modification of the
PCLATH register for any CALL or GOTO instruction that
has a destination in a different page than is currently
selected by the PCLATH register.

The PIC18CXXX family can address 2-MBytes of pro-
gram memory (1-Mword). The use of program memory
pages has been eliminated. Now the CALL and GOTO
instructions are 2-word instructions and can address
any location in the program memory space. In some
instances the destination address is close to the CALL
or GOTO instruction. In these cases, optimized instruc-
tions are available; the relative call and unconditional
branch instructions (called the RCALL and BRA instruc-

tions), which are one word instructions. Condition
branch instructions are also available, which will branch
to a new program memory location based on an offset
from the current program counter value. These condi-
tional branch instructions are useful for the generation
of optimized code from a C compiler. Figure 14 shows
the program flow instructions for PIC17CXXX and
PIC18CXXX families.

Example 1 shows a code sequence for branching to a
code segment depending on the status of the zero bit.
For the PIC17CXXX family, the GOTO instruction will
cause the execution to branch to the program memory
page dependent on the value loaded in the PCLATCH
register. In the PIC18CXXX family, the GOTO instruction
is two words and can address any location in the pro-
gram memory. To ensure robustness of the system, the
2nd word of a two word instruction (when executed as
an instruction) is executed as a NOP. This allows the
same source code to work for both families, though in
the PIC18CXXX family an extra instruction cycle will be
required to reach the code at the Not_Zero symbol.

Example 2 shows an alternate implementation done
with the PIC18CXXX instruction set. With this instruc-
tion, the location of the software routine labeled Zero
would need to be within 128 words before the BZ
instruction or 127 words after the BZ instruction.

FIGURE 14: PROGRAM MEMORY FLOW INSTRUCTIONS

EXAMPLE 1: PIC17CXXX OR PIC18CXXX CODE EXAMPLE

EXAMPLE 2: ALTERNATE PIC18CXXX CODE EXAMPLE

Not_Zero

BTFSC STATUS, Z
GOTO Zero
:

; Is result Zero
; YES, goto the code for a result of Zero
; NO, result was not Zero

Not_Zero
BZ Zero
:

; If result Zero, goto the code for a result of Zero
; NO, result was not Zero

PIC17CXXX

PIC18CXXX

CALL
GOTO

CALL
GOTO k7 k k k k k k k0Opcode

RCALL
BRA k k k k k k k k k kOpcode

Address Reach

Within currently selected Program
Memory Page (2-Kword size), as
specified by the PCLATH register.

The entire 1-Mword Program
Memory map.

+1023, -1024 single word instructions
from the current Program Counter
Address.

BC, BNC
BZ, BNZ

k k k k k k k kOpcode
+127, -128 single word instructions
from the current Program Counter
Address.

BN, BNN
BOV, BNOV

k19 k k k k k k k k k k k81 1 1 1

k k k k k k k k k k k kOpcode

AN726

 1999 Microchip Technology Inc. DS00726A-page 17

The ability to branch on the condition of a status bit
value allows more efficient code to be generated.
Table 8 shows how these are implemented between
the PIC18CXXX family and the PIC17CXXX family. In
the PIC18CXXX family, the branch is relative from the
program counter location and has a reach of -128
words or +127 words. In the PIC17CXXX family two
possible methods are shown. Method 1 is the positive
logic method which may have been used. Method 2
(shaded) is the negative logic method which would get
to the carry routine one instruction cycle quicker.
Method 1 is what translates to the corresponding
PIC18CXXX instruction.

Each method requires the use of a GOTO instruction.
The GOTO instruction allows access to any location in
the selected page of program memory (as specified by
the value in the PCLATH register). The number of
cycles indicates the number of cycles to get to the
desired routine for the true case (as defined by the
PIC18CXXX conditional branch instruction) and the
cycles in parentheses () indicates the number of cycles
for the false case. As can be seen by the Table 8 com-
parison, the number of cycles and memory require-
ments is better for the PIC18CXXX instructions.

Migration Impact

Minimal changes should be required for
PIC17CXXX source code. Any operations on
PCLATH (paging) are ignored, since the
PIC18CXXX families CALL and GOTO instructions
contain the entire address.

Look-up tables will require some sort of modifica-
tion. Tables implemented using the RETLW instruc-
tion need to be modified due to the Program
Counter now being a byte counter (see explana-
tion in “Program Counter”). Tables implemented
using the PIC17CXXX Table Reads will need to be
modified to address the new implementation in the
PIC18CXXX (see explanation in “Table Reads
and Table Writes”).

Code optimization can be achieved by removing
instructions that modify the PCLATH register
before the CALL and GOTO instructions. If the
desired program memory location is within ± 1K
instruction words, then the use of the BRA and
RCALL instructions will maintain the use of one
instruction word, instead of the new requirement
for two words.

Additional optimization can be achieved by utilizing
new instructions, such as Branch on condition
instructions. These Branch on condition instruc-
tions must have the program memory address of
the branch code to be within -128 to +127 instruc-
tion words from the branch instruction.

TABLE 8: BRANCH ON STATUS BIT COMPARISON

Alternate PIC18CXXX Instruction PIC17CXXX Instruction Sequence (Note 1)

Method Cycles/
Words Method 1 Cycle/

Words Method 2 Cycle/
Words

BC Carry 2 (1) /1

NoCarry

BTFSC
GOTO
:

STATUS, C
Carry

3 (2) /2

Carry

BTFSS
GOTO
:

STATUS, C
NoCarry

2 (3) /2

BNC NoCarry 2 (1) /1

Carry

BTFSS
GOTO
:

STATUS, C
NoCarry

3 (2) /2

NoCarry

BTFSC
GOTO
:

STATUS, C
Carry

2 (3) /2

BN Neg 2 (1) /1

NotNeg

BTFSC
GOTO
:

STATUS, N
Neg

3 (2) /2

Neg

BTFSS
GOTO
:

STATUS, N
NotNeg

2 (3) /2

BNN NotNeg 2 (1) /1

Neg

BTFSS
GOTO
:

STATUS, N
NotNeg

3 (2) /2

NotNeg

BTFSC
GOTO
:

STATUS, N
Neg

2 (3) /2

BOV Ovflw 2 (1) /1

NoOvflw

BTFSC
GOTO
:

STATUS, OV
Ovflw

3 (2) /2

Ovflw

BTFSS
GOTO
:

STATUS, OV
NoOvflw

2 (3) /2

BNOV NoOvflw 2 (1) /1

Ovflw

BTFSS
GOTO
:

STATUS, OV
NoOvflw

3 (2) /2

NoOvflw

BTFSC
GOTO
:

STATUS, OV
Ovflw

2 (3) /2

BZ Zero 2 (1) /1

NotZero

BTFSC
GOTO
:

STATUS, Z
Zero

3 (2) /2

Zero

BTFSS
GOTO
:

STATUS, Z
NotZero

2 (3) /2

BNZ NotZero 2 (1) /1

Zero

BTFSS
GOTO
:

STATUS, Z
NotZero

3 (2) /2

NotZero

BTFSC
GOTO
:

STATUS, Z
Zero

2 (3) /2

Note 1: This method may also be used by the PIC18CXXX family. This is source code compatible, but the GOTO instruction is now a two word instruction.
When the second word of the GOTO instruction is executed as if it was a single word instruction (when the skip occurs), the second word is executed
as a no operation (NOP instruction).

AN726

DS00726A-page 18  1999 Microchip Technology Inc.

Data Memory

The Data Memory Map of the PIC17CXXX devices is
shown in Figure 15 with the PIC18CXXX data memory
map shown in Figure 16. In both architectures, the
bank size is 256 bytes. Software code migration does
not require the low nibble of the Bank Select Register
(BSR) to be modified. The PIC17CXXX devices also
bank the Special Function Registers (SFRs). This is not
required with the PIC18CXXX architecture. All instruc-
tions which are used to modify the BSR<7:4> bit may
be removed from the user code.

Figure 17 shows the mapping of data memory from a
PIC17CXXX device to a PIC18CXXX device. The map-
ping translates without effort given that the GPR RAM
addresses were specified with the full address, and not
the relative address within the selected bank. With a full
10-bit address, the assembler will map the addresses
correctly. The SFR, though not at the same addresses

will be properly mapped to the correct location in bank
15 due to the supplied header file. No software coding
modifications are required to address the SFR regis-
ters, since the SFR registers are in the Access bank,
and can be addressed regardless of the selected bank
(value of the BSR register).

The low nibble of the BSR (BSR<3:0>) specifies the
RAM bank to access. This is the same for both the
PIC17CXXX and PIC18CXXX. Any operations on the
high nibble of the BSR (BSR<7:4>) can be ignored by
the PIC18CXXX, since these bits are not implemented.

In the PIC17CXXX, the GPRs in the memory range
1Ah to 1Fh are in shared RAM. When mapped to the
PIC18CXXX, these addresses are in the access bank
and therefore are also shared RAM.

FIGURE 15: PIC17CXXX DATA MEMORY MAP

00h

1Fh
20h

FFh

BSR
Bank

0
Bank

1
Bank

2
Bank

3
Bank

14
Bank

15

SFR
Area

GPR
Area

AN726

 1999 Microchip Technology Inc. DS00726A-page 19

FIGURE 16: PIC18CXXX DATA MEMORY MAP

BSR

Bank 0

Bank 1

Bank 2

Bank 3

Bank 15

GPR
Area

SFR
Area

Access RAM

AN726

DS00726A-page 20  1999 Microchip Technology Inc.

FIGURE 17: MAPPING OF DATA MEMORY FROM PIC17CXXX TO PIC18CXXX

BSR

00h

1Fh
20h

FFh

Bank
0

Bank
1

Bank
2

Bank
3

SFR
Area

GPR
Area

Bank 0

Bank 1

Bank 2

Bank 3

Bank 15

000h

01Fh
020h

0FFh
100h

11Fh
120h

1FFh
200h

21Fh
220h

2FFh
300h

31Fh
320h

3FFh

F00h

F1Fh
F20h

FFFh

SFR

19h

019h

PIC17CXXX
PIC18CXXX

SFR Area
N.A.

GPR Area
GPR and SFR Area

AN726

 1999 Microchip Technology Inc. DS00726A-page 21

There are occasions where the application software
requires moving data from one register to another. This
transfer may be a single byte or a block of data.

For the PIC17CXXX family there are instructions that
move the contents from the Peripheral (P) area (first 32
locations in data memory) to the File (F) area (any-
where in the specified 256 locations), or from the File
area to the Peripheral area. The actual RAM address is
specified by the Bank Select Register (BSR) value,
since both the SFR registers and GPR registers are
banked.

With the PIC18CXXX, the instruction moves the con-
tents from one register to another anywhere in the 4
KByte data memory space without any banking
requirements.

Example 1 shows the sequence of instructions to move
a value from one RAM location to another in the
PIC17CXXX family. Example 2 shows the instruction to
move a value from one RAM location to another in the
PIC18CXXX family.

Migration Impact

If the PIC17CXXX source code uses register defi-
nitions that specifies full 12-bit addresses for ALL
register file locations, then no work is required for
the remapping of the data memory. The BSR low
nibble (BSR<3:0>) will be updated in the same
fashion. Optimization can be done by removing
any instructions that are used to modify the high
nibble of the BSR register (BSR<7:4>), since
these bits are not implemented on the
PIC18CXXX. There is one instruction that is only
used to do this modification. This is the MOVLR
instruction.

EXAMPLE 1: PIC17CXXX MEMORY-TO-MEMORY MOVES

EXAMPLE 2: PIC18CXXX MEMORY-TO-MEMORY MOVES

Case 1: Single Byte Transfer

banksel MYREG1

MOVFP MYREG1, WREG

banksel MYREG2

MOVPF WREG, MYREG2

; Switch to the bank for MYREG1
; (may not be required)
; Move contents of MYREG1 to the
; WREG register
; Switch to the bank for MYREG2
; (may not be required)
; Move contents of the WREG
; register to MYREG2

Case 2: Block Transfer

LP1

Continue

MOVLW BYTE_CNT
MOVWF CNTR
banksel MYREG1

MOVFP MYREG1, WREG

banksel MYREG2

MOVPF WREG, MYREG2

DECFSZ CNTR
BRA LP1
:

; Load the Byte Count value
; into register CNTR (same bank as MYREG1)
; Switch to the bank for MYREG1
; (may not be required)
; Move contents of MYREG1 to the
; WREG register
; Switch to the bank for MYREG2
; (may not be required)
; Move contents of the WREG
; register to MYREG2
; All bytes moved?
; NO, move next byte
; YES, Continue

Case 1: Single Byte Transfer

MOVFF MYREG1, MYREG2 ; Move contents of MYREG1 to MYREG2

Case 2: Block Transfer

LP1

Continue

MOVLW BYTE_CNT
MOVWF CNTR
MOVFF POSTINC0, POSTINC1
DECFSZ CNTR
BRA LP1
:

; Load the Byte Count value
; into register CNTR
; Move contents of MYREG1 to MYREG2
; All bytes moved?
; NO, move next byte
; YES, Continue

AN726

DS00726A-page 22  1999 Microchip Technology Inc.

INSTRUCTION SET

With the merging of the PIC16CXXX and PIC17CXXX
instruction sets to create the PIC18CXXX instruction
set and the enhancements to the architecture, some
instructions had to be modified. Table 9 shows the
PIC17CXXX instructions that have been modified.
Some instructions operate on a new status bit which
indicates if the resultant value is negative (N). Five
instructions now affect the status of the zero (Z) bit.
These instructions are:

• CLRF
• RRCF
• RRNCF
• RLCF
• RLNCF

Three instructions have changed the mnemonics, but
the arguments do not need to be modified. For these
three instructions a simple search and replace can be
used. These instructions are:

• MOVPF
• MOVFP
• NEGW

Table 9 shows what these instructions should be
replaced with.

The method of operation for four instructions (Table
Reads and Table Writes) has changed. The application
code surrounding the operation of this feature needs to
be revisited and the code modified accordingly. These
instructions are:

• TABLRD
• TLRD
• TABLWT
• TLWT

Lastly, two instructions have been removed. These
instructions are:

• MOVLR
• LCALL

The MOVLR instruction is no longer required since there
are no separate banks for the Special Function Regis-
ters. The LCALL instruction is changed to the
PIC18CXXX CALL instruction, since it can access any
location in the program memory map. The application
code that preconditioned the PCLATH register can be
removed, since it is no longer needed for calling the
desired routine.

The PIC17CXXX family only has five instructions
where the operation on the status bits changed. These
are the clear file and rotate instructions (CLRF, RLCF,
RLNCF, RRCF, and RRNCF).

Table 9 shows the PIC17CXXX instructions that are dif-
ferent in the PIC18CXXX architecture. These differ-
ences may be related to the status bits that are
affected. An instruction is now handled by a more
generic instruction, or the operation of the instruction
has been modified to better fit with the new architec-
ture. Rows that are shaded are new instructions to the
PIC18CXXX architecture that are replacing
PIC17CXXX instructions. These are shown to indicate
the status bits affected.

Migration Impact

Ensure that the instructions that affect the status
bits differently do not cause algorithm issues and
that other instructions are appropriately converted
and implemented.

AN726

 1999 Microchip Technology Inc. DS00726A-page 23

TABLE 9: INSTRUCTION SET COMPARISON

Instruction
Status Bits Affected

Comment
PIC17CXXX PIC18CXXX

ADDLW k C,DC,OV, Z C,DC,OV, Z, N —

ADDWF f, d C,DC,OV, Z C,DC,OV, Z, N —
ADDWFC f, d C,DC,OV, Z C,DC,OV, Z, N —
ANDLW k Z Z, N —

ANDWF f, d Z Z, N —
CLRF f, s none Z Instruction now affects Zero (Z) bit
DECF f, d C,DC,OV, Z C,DC,OV, Z, N —

INCF f, d C,DC,OV, Z C,DC,OV, Z, N —
IORLW k Z Z, N —
IORWF f, d Z Z, N —

LCALL k none N.A. Use CALL n, s instruction
MOVFP f, p none N.A. Use MOVFF fs, fd instruction
MOVFF fs, fd N.A. none Replaced MOVFP and MOVPF instructions

MOVLR k none N.A. Not required for PIC18CXXX devices
MOVPF p, f Z N.A. Use MOVFF fs, fd instruction
NEGW f, s C,DC,OV, Z N.A. Use NEGF f instruction

NEGF f N.A. C,DC,OV, Z, N Replaced NEGW f, s instruction
RLCF f, d C C, Z, N Instruction now affects Zero (Z) bit
RLNCF f, d none Z, N Instruction now affects Zero (Z) bit

RRCF f, d C C, Z, N Instruction now affects Zero (Z) bit
RRNCF f, d none Z, N Instruction now affects Zero (Z) bit
SUBLW k C,DC,OV, Z C,DC,OV, Z, N —

SUBWF f, d C,DC,OV, Z C,DC,OV, Z, N —
SUBWFB f, d C,DC,OV, Z C,DC,OV, Z, N —
TABLRD t, i, f none N.A. Use TBLRD instructions

TABLWT t, i, f none N.A. Use TBLWT instructions
TLRD t, f none N.A. Use TBLRD instructions
TLWT t, f none N.A. Use TBLWT instructions

TBLRD*
TBLRD*+
TBLRD*-
TBLRD+*

N.A. none Replaced TABLRD and TLRD instructions

TBLWT*
TBLWT*+
TBLWT*-
TBLWT+*

N.A. none Replaced TABLWT and TLWT instructions

XORLW k Z Z, N —

XORWF f, d Z Z, N —
Note 1: The N bit is new for the PIC18CXXX family of devices.

AN726

DS00726A-page 24  1999 Microchip Technology Inc.

ARCHITECTURAL ENHANCEMENTS

Some of the architectural enhancements that are
implemented in the PIC18CXXX family include:

• Program Counter
• Table Read / Table Write
• Interrupts
• Stack
• Indirect Addressing

Program Counter

The program counter of the PIC18CXXX Architecture
works on a byte address, as opposed to a word
address for the PIC17CXXX family. This means that the
addresses of routines will be different. When using
symbolic coding, the assembler will take care of gener-
ating the correct address, but any routine that directly
modifies the program counter needs to take this differ-
ence into account. One of the most common code func-
tions where this occurs is in table lookup routines that
use the RETLW instruction.

Example 1 shows a typical table look-up for the
PIC17CXXX family. Example 2 shows the table look-up
for the PIC18CXXX Architecture. Since the Offset

needs to be multiplied by two to get the byte address,
the reach (size) of the look-up table is now half. Access
to the PCLATU and PCLATH registers or the ability to
do Table Reads allows larger tables to be stored in
memory.

Occasionally the use of the ’$’ symbol is used in the
source code to indicate the program address of the cur-
rent instruction. The ’$’ syntax still operates as before,
but since the program counter now specifies byte
addresses any offset to the ’$’ parameter need to be
doubled. Example 3 shows these modifications.

Migration Impact

Any modification of the PCL register will require
the source code to be inspected to ensure that the
desired address will be accessed. This is due to
the Program Counter being a byte count into pro-
gram memory and not the program memory word
count. This is commonly found in simple Table
Lookup routine. Remember that reading PCL
updates the contents of PCLATH and PCLATU
(from PCH and PCU), and writing to PCL loads
PCH and PCU with the contents of PCLATH and
PCLATU.

EXAMPLE 1: PIC17CXXX TABLE LOOK-UP USING THE RETLW INSTRUCTIONS

EXAMPLE 2: PIC18CXXX TABLE LOOK-UP USING THE RETLW INSTRUCTIONS

EXAMPLE 3: USE OF THE ’$’ PARAMETER

MOVFP Offset, WREG ; Load WREG with offset to Table
CALL Table_LU ; Call the lookup table
:
:

Table_LU ADDWF PCL ; Add Offset to PCL
RETLW ’A’ ; Returns value in WREG
RETLW ’B’ ; Returns value in WREG
: ;

MOVFF Offset, WREG ;
CALL Table_LU ; Call the lookup table
:
:

Table_LU BCF Offset, 7 ; Clear MSb, for rotate to LSb
RLNCF Offset, PCL ; Offset * 2 added to PCL
RETLW ’A’ ; Returns value in WREG
RETLW ’B’ ; Returns value in WREG
: ;

GOTO $ - 6 ; Replaces GOTO $ - 3
GOTO $ - 0x2E ; Replaces GOTO $ + 0x17

AN726

 1999 Microchip Technology Inc. DS00726A-page 25

Table Reads and Table Writes

Table Read and Table Write operations have been
changed. In the PIC17CXXX architecture, the table
pointer register points to the program memory word
address. In the PIC18CXXX architecture the table
pointer register points to the program memory byte
address. This means that the PIC18CXXX is now only
operating with 8-bits of data. This allows there to be
only one instruction for a Table Read and one instruc-
tion for a Table Write. The PIC17CXXX architecture
requires two instructions for each, due to operating with
16-bits of data.

Example 4 shows the PIC17CXXX code segment for
reading a fixed number of words (WORD_COUNT) into
sequential RAM locations using indirect addressing.
Example 5 shows the PIC18CXXX code segment for
reading a fixed number of bytes (BYTE_COUNT) into
sequential RAM locations using indirect addressing.

Migration Impact

The code sections where Table reads and Table
writes were implemented would need to be rewrit-
ten to address the differences in the implementa-
tions.

EXAMPLE 4: PIC17CXXX TABLE READ

EXAMPLE 5: PIC18CXXX TABLE READ

MOVLW WORD_COUNT ; Load the Word Count value
MOVWF CNTR ; into CNTR

;
MOVLW HIGH(TBL_ADDR) ; Load the Table Address
MOVWF TBLPTRH ;
MOVLW LOW(TBL_ADDR) ;
MOVWF TBLPTRL ;
TABLRD 0, 1, DUMMY ; Dummy read,

; Updates TABLATH
; Increments TBLPTR

LOOP1 TLRD 1, INDF0 ; Read HI byte in TABLATH
TABLRD 0, 1, INDF0 ; Read LO byte in TABLATL,

; update TABLATH:TABLATL,
; and increment TBLPTR

DECFSZ CNTR ; Read Word Count locations
GOTO LOOP1 ; Read next word

MOVLW BYTE_COUNT ; Load the Byte Count value
MOVWF CNTR ; into CNTR

;
;; MOVLW UPPER(TBL_ADDR) ; Load the Table Address
;; MOVWF TBLPTRU ; (on POR TBLPTRU = 0, so
;; ; loading TBLPTRU is not
;; ; required for conversions)

MOVLW HIGH(TBL_ADDR) ; Load the Table Address
MOVWF TBLPTRH ;
MOVLW LOW(TBL_ADDR) ;
MOVWF TBLPTRL ;

LOOP1 TBLRD*+ ; Read value into TABLAT,
; Increment TBLPTR

MOVFF TABLAT, POSTINC0 ; Copy byte to RAM @ FSR0
; Increment FSR0

DECFSZ CNTR ; Read Byte Count locations
GOTO LOOP1 ; Read next Byte

AN726

DS00726A-page 26  1999 Microchip Technology Inc.

Interrupts

The interrupt structure of the two families is significantly
different. Figure 18 shows a simplified block diagram
for the interrupt structures of the two families.

In the PIC17CXXX family, there are four interrupt vector
addresses with a priority that is fixed by hardware. In
the PIC18CXXX family, there are two interrupt vector
addresses. One vector address for High Priority inter-
rupts and one vector address for Low Priority inter-
rupts. The priority of the peripheral interrupt is software
programmable.

Table 10 compares the interrupt vector addresses for
both the PIC17CXXX and PIC18CXXX families.

Migration Impact

The code section for interrupt handling would need
to be rewritten to address the differences in the
implementations. If the PIC17CXXX separate
interrupts are desired for a reduction of the inter-
rupt latency, the PIC18CXXX HighPriority/Low Pri-
ority vectors may be able to address this.

TABLE 10: INTERRUPT VECTOR ADDRESSES

Location

PIC17CXXX
Address

PIC18CXXX
Address Comment

Word Byte Word Byte

Reset Vector Address 0000h N.A. 0000h 0000h —
INT pin Interrupt Vector
Address

0004h N.A. — — PIC17CXXX must move this code to either the
high or low priority interrupt vector address

High Priority Interrupt Vector
Address

— — 0004h 0008h —

Low Priority Interrupt Vector
Address

— — 000Ch 0018h —

Timer0 Interrupt Vector
Address

0010h N.A. — — PIC17CXXX must move this code to either the
high or low priority interrupt vector address

T0CKI pin Interrupt Vector
Address

0018h N.A. — — PIC17CXXX must move this code to either the
high or low priority interrupt vector address

Peripheral Interrupt Vector
Address

0020h N.A. — — For code migration without software enhance-
ments, the code at this address should now be
ORG’d to the PIC18CXXX High Priority Inter-
rupt Vector Address (0x018)

AN726

 1999 Microchip Technology Inc. DS00726A-page 27

FIGURE 18: INTERRUPT STRUCTURE BLOCK DIAGRAMS

Peripheral 1 IF
Peripheral 1 IE

T0IF
T0IE

INTF
INTE

T0CKIF
T0CKIE

GLINTD

PEIE

Wake-up (If in SLEEP mode)
or terminate long write

Interrupt to CPU

PEIF

Peripheral x IF
Peripheral x IE

PIC17CXXX

T0IE

GIEH/GIE

GIEL/PEIE

Wake-up if in SLEEP mode

Interrupt to CPU
Vector to location
0008h

INT2F
INT2E
INT2P

INT1F
INT1E
INT1P

T0IF
T0IE
T0IP

INT0F
INT0E

RBIF
RBIE
RBIP

IPE

T0IF

T0IP

INT1F
INT1E
INT1P
INT2F
INT2E
INT2P

RBIF
RBIE
RBIP

INT0F
INT0E

GIEL\PEIE

Interrupt to CPU
Vector to Location

IPE

IPE

0018h

Peripheral Interrupt Flag bit
Peripheral Interrupt Enable bit
Peripheral Interrupt Priority bit

Peripheral Interrupt Flag bit
Peripheral Interrupt Enable bit
Peripheral Interrupt Priority bit

TMR1IF
TMR1IE
TMR1IP

XXXXIF
XXXXIE
XXXXIP

Additional Peripheral Interrupts

TMR1IF
TMR1IE
TMR1IP

High Priority Interrupt Generation

Low Priority Interrupt Generation

XXXXIF
XXXXIE
XXXXIP

Additional Peripheral Interrupts

PIC18CXXX

AN726

DS00726A-page 28  1999 Microchip Technology Inc.

Stack

The stack of the PIC17CXXX family is 16 levels deep.
When the 17th item is loaded onto the stack, the con-
tent of stack level 1 is overwritten (circular buffer). In the
PIC18CXXX family, the stack is 31 levels deep. When
the 32nd item is loaded onto the stack, the content of
stack level 31 is overwritten (stack pointer becomes
stuck at 31).

The PIC17CXXX has a stack available bit (STKAV),
which indicates if the stack pointer is pointing to the top
of stack, or if the stack has rolled over. The PIC18CXXX
has 2 bits, which are used to specify if the stack is full
(STKFUL) or if underflow (STKUNF) condition has
occurred. A configuration bit (STVREN) specifies if
these flags generate a device reset.

In the PIC18CXXX, the stack pointer is now memory
mapped. This is useful in some applications, such as
Real Time Operating Systems (RTOS). Utmost care
should be taken if modifying the stack pointer and con-
tents of the stack.

An enhancement of the PIC18CXXX is the implemen-
tation of the Fast Register Stack. The Fast Register
Stack saves the contents of the WREG, STATUS, and
BSR registers. This stack is one level deep for each
register. This is useful for saving the status of these
registers when you do a subroutine call (if interrupts are
disabled), or for interrupts where nesting is not a possi-
bility (do not use with low priority interrupts).

Figure 19 shows the operation of the PIC17CXXX
stack, while Figure 20 shows the operation of the
PIC18CXXX stack.

Migration Impact

When migrating code from the PIC17CXXX to the
PIC18CXXX, one should only need to modify the
application software in regards to stack overflows
and underflows. If no stack overflow/underflow
checking was implemented, then there are no
code migration issues due to the hardware stack.

FIGURE 19: PIC17CXXX STACK OPERATION

FIGURE 20: PIC18CXXX STACK OPERATION

Push1
Push2
Push3

Push14
Push15
Push16

Push17
Push18 Top of Stack

After this PUSH, the STKAV bit is cleared

00011
0x001A34

11111
11110
11101

00010
00001
00000

00010

Return Address Stack

Top of Stack
0x000D58

TOSLTOSHTOSU
0x340x1A0x00

STKPTR<4:0>

AN726

 1999 Microchip Technology Inc. DS00726A-page 29

Indirect Addressing

The PIC17CXXX family has 2 indirect addressing
pointers (registers) called FSR0 and FSR1. Each
pointer uses an 8-bit register. This allows the indirect
addressing to occur anywhere in the selected banks of
data memory (SFR bank and GPR bank).

The PIC18CXXX family has 3 indirect addressing
pointers (registers) called FSR0, FSR1 and FSR2.
Each pointer uses an 12-bit register. This allows the
indirect addressing to occur anywhere in the data
memory map.

Table 11 shows a comparison of the Indirect Address-
ing capabilities and operation.

Migration Impact

From the PIC17CXXX code, ensure that the cur-
rent value of the BSR<3:0> is loaded into the high
byte of the FSR register in the PIC18CXXX. This
will ensure that the data memory access is in the
correct bank.

Also, if any of the FSR automatic increment/decre-
ment features are used (through the manipulation
of the PIC17CXXX ALUSTA control bits), the
appropriate indirect addressing register needs to
be selected in the PIC18CXXX code.

Any indirect accesses to the PIC17CXXX SFRs
would require that the PIC18CXXX FSRxH regis-
ter be loaded with 0x0F. This makes the indirect
addresses occur in bank 15.

TABLE 11: INDIRECT ADDRESSING COMPARISON

Feature PIC17CXXX PIC18CXXX Comment

Number of FSR registers 2 3
FSRx Register Size 8-bits 12-bits

BSR specifies Bank(s) Yes No PIC17CXXX specifies both SFR and GPR banks
FSR Memory Reach 256 Bytes 4096 Bytes PIC18CXXX can access entire memory range,

PIC17CXXX can access only in selected banks
(SFR and GPR banks).

Instruction to load value into FSRx
register

No Yes LFSR instruction is a 2 word 2 cycle instruction

FSR Pre-increment support No Yes PIC18CXXX operation determined by register
addressed (register PREINCx)

FSR Post-increment support Yes Yes PIC18CXXX operation determined by register
addressed (register POSTINCx).
PIC17CXXX operation determined by control bits
(FS3:FS2 and FS1:FS0 in register ALUSTA)

FSR Post-decrement support Yes Yes PIC18CXXX operation determined by register
addressed (register POSTDECx)
PIC17CXXX operation determined by control bits
(FS3:FS2 and FS1:FS0 in register ALUSTA)

FSR with Offset support No Yes PIC18CXXX operation determined by register
addressed (register PLUSWx)

ALUSTA control bits (FS3:FS2 and
FS1:FS0) for Indirect Addressing
Operation

Yes No PIC18CXXX operation determined by register
addressed

AN726

DS00726A-page 30  1999 Microchip Technology Inc.

LAYOUT

The pinout of the devices will need to be compared on
an individual basis. The first PIC18CXXX devices
(PIC18CXX2) are design to be footprint/functional
compatible with some of the 28- and 40-pin Mid-Range
devices. These devices are therefore not footprint com-
patible with the existing PIC17CXXX devices. This
means that a revision of the board layout will be
required.

Future PIC18CXXX devices may be footprint compati-
ble, but a pin-by-pin comparison is required to ensure
footprint/functional compatibility with the desired
PIC17CXXX device. This functional compatibility does
not ensure a compatibility with regards to the electrical
characteristics of the device (such as I/O pin VIL/VIH

characteristics or signal timings).

Migration Impact

A new layout is currently required for all migrations
from the PIC17CXXX devices to the PIC18CXXX
devices. Future PIC18CXXX devices may be
specified that are footprint compatible with
PIC17CXXX devices

CODING TECHNIQUES

The conversion process is aided when the initial code
was written symbolically. That is, register names, bit
names, and address labels are used in the source code
as opposed to the hard coded values.

Example 1 shows the technique for using symbols for
register and bit definitions, while Example 2 shows
labels being used to specify addresses.

EXAMPLE 1: CODE TECHNIQUE #1

EXAMPLE 2: CODE TECHNIQUE #2

BSF 3,2 ; Bad Programmer

BSF STATUS, Z ; Good Programmer

GOTO 0x0934 ; Bad Programmer

MY_Routine

GOTO
:
:
:

MY_Routine ; Good Programmer

; This is at address 0x0934

AN726

 1999 Microchip Technology Inc. DS00726A-page 31

EXAMPLE CODE CONVERSION

Appendix A is a code conversion from a code segment
found in Application Note AN547, Serial Port Utilities.
The code segment was source file SERINT.ASM. The
source file includes indications in the comments for
each source code line that was changed. This is shown
by a comment as follows:

 ;*****.

This was done to easily indicate each line that required
a change, and specify the change that was imple-
mented to make the source code compatible with the
PIC18CXXX assembler.

CONCLUSION

Understanding the issues in a code conversion from
one device to another is very important for assuring a
smooth conversion process. This document hopefully
has given you insight into where to inspect your code
during the conversion process.

One of the main architectural goals of the PIC18CXXX
family is that of source code compatibility foremost with
the PICmicro Mid-Range Architecture and then with the
High-End Architecture. The different implementation of
peripheral and architectural features are the biggest
hurdle. Since some of these peripheral modules and
architectural features are implemented differently
between the two families, this directly affects the ease
of the conversion process. Conversions may require
minimal effort in most applications, but there will be fea-
tures (such as time based functions) that may require a
full source code rewrite. Depending on the application
of these functions, this rewrite may be relatively minor
or fairly involved.

AN726

DS00726A-page 32  1999 Microchip Technology Inc.

APPENDIX A: EXAMPLE CODE CONVERSION

EXAMPLE 1: CONVERTED SOURCE CODE EXAMPLE
; TITLE ’Serial Interface Routines
; PROCESSOR 18C452
;
;This is a short program to demonstrate how to transmit and receive
;serial data using the PIC18C452.
;
;A message will be transmitted and routed right back to the processor
;and read. The read information will be saved in an internal buffer.
;
; Program: 18C_SER.ASM
; Revision Date:
; 7-02-99 Conversion to PIC18Cxx2 code.
; Converted from PIC17C42 SERINT.ASM 1-22-97
; as found in AN547 (DS00547C)
;
;
 LIST P = 18C452

#include <p18c452.inc> ;***** Changed the include file
;
;*** These Registers may be remapped to allow the other application software
;*** to take advantage of the access RAM in Bank 0.
;
TX_BUFFER equ 0x80
RX_BUFFER equ 0xB0
RXPTR equ 0x20
TXPTR equ 0x21
SERFLAG equ 0x22
RTINUM equ 0x23
;
; Status Bits used with user registers
;
TXDONE equ 0
RXDONE equ 1
HILOB equ 2
;
;

AN726

 1999 Microchip Technology Inc. DS00726A-page 33

 ORG 0
 goto start
;
; Changes ORG directives to point to new High and Low priority interrupts
; Removed origines to TMRO, T0CKI, and Peripheral interrupts.
;
; ORG 0x0010 ;vector for rtcc interrupt
 ;***** No Longer an separate TMRO Interrupt Vector Address
;rtcc_int ;not used here
;
 ORG 0x0008 ;vector for peripheral interrupt
 ;***** Vector Address changed from 0x0020
perf_int
 goto service_perf ;service the interrupts
;
 ORG 0x0030
;
;initialize the serial port: baud rate interrupts etc.
init_serial
 clrf SERFLAG ;clear all flags
 ;***** REMOVED ’, F’
; movlb 0 ;***** REMOVE
 movlw 0x07 ;select 9600 baud
 MOVWF SPBRG ;***** Change MOVFP tp MOVWF
 movlw 0x90 ;set up serial pins
 MOVWF RCSTA ;***** Change MOVFP tp MOVWF
 clrf TXSTA ;setup transmit status
 ;***** REMOVED ’, F’
; movlb 1 ;***** REMOVE
 clrf PIR1 ;clear all interrupts
 ;***** REMOVED ’, F’, Changed PIR -> PIR1
 clrf PIE1 ;clear all enables
 ;***** REMOVED ’, F’, Changed PIE -> PIE1
 bsf PIE1,RCIE ;enable receive interrupt
 ;***** Changed PIE -> PIE1
 movlw RX_BUFFER ;set pointer to rx buffer
 MOVWF RXPTR ;***** Change MOVPF tp MOVWF
 clrf INTCON ;clear all interrupts
 ;***** REMOVED ’, F’, INTSTA -> INTCON
 bsf INTCON,PEIE ;enable peripheral ints
 ;***** INTSTA -> INTCON
 retfie
;
;start transmission of first two bytes
start_xmit
; movlb 0 ;***** REMOVE
 bsf TXSTA,TXEN ;enable transmit
; tablrd 1,1,W ;load latch ;***** REPLACED
; tlrd 1,TXREG ;load high byte ;***** REPLACED
 TBLRD*+ ;***** Due to New Implementation of Table Read function
 MOVFF TABLAT, TXREG ;***** Due to New Implementation of Table Read function
; movlb 1 ;***** REMOVE
empty_chk
 btfss PIR1,TXIF ;TXBUF empty?
 ;***** Changed PIR -> PIR1
 goto empty_chk ;no then keep checking
; movlb 0 ;***** REMOVE
; tablrd 0,1,TXREG ;load lo byte ;***** REPLACED
 TBLRD*+ ;***** Due to New Implementation of Table Read function
 MOVFF TABLAT, TXREG ;***** Due to New Implementation of Table Read function
; movlb 1 ;***** REMOVE
 bsf PIE1,TXIE ;enable transmit interrupts
 ;***** Changed PIE -> PIE1
 bsf SERFLAG,HILOB ;set up next for high byte
 return
;

AN726

DS00726A-page 34  1999 Microchip Technology Inc.

;
 PAGE
;
service_perf
;check for transmit or receive interrupts only
 btfsc PIR1,RCIF ;RX buffer full?
 ;***** Changed PIR -> PIR1
 goto service_recv ;yes then service
 btfss PIR1,TXIF ;TX buffer empty?
 ;***** Changed PIR -> PIR1
 goto exit_perf ;no, ignore other int.
service_xmt
 btfsc SERFLAG,TXDONE ;all done?
 goto exit_perf ;yes then quit
 btfsc SERFLAG,HILOB ;if clr, do low byte
 goto rd_hi ;else read high byte
; tablrd 0,1,W ;read lo ;***** REPLACE
 TBLRD*+ ;***** Due to New Implementation of Table Read function
 goto sx_cont ;continue
rd_hi
; tlrd 1,W ;read high byte ;***** REPLACE
 TBLRD*+ ;***** Due to New Implementation of Table Read function
sx_cont
 btg SERFLAG,HILOB ;toggle flag
; movlb 0 ;***** REMOVE
; MOVPF TXREG ;***** REMOVE, TXREG loaded by next instruction
 MOVFF TABLAT, TXREG ;***** Due to New Implementation of Table Read function
 tstfsz W ;last byte?
 goto exit_perf ;no then cont
end_xmt ;else end transmit
; movlb 1 ;***** REMOVE
 bcf PIE1,TXIE ;disable tx interrupt
 ;****** Changed PIE -> PIE1
 bsf SERFLAG,TXDONE ;set done flag
exit_perf
; bcf INTSTA,PEIF ;***** REMOVE, clear peripheral int
 ;***** This instruction was never needed
 retfie
;
service_recv
 btfsc SERFLAG,RXDONE ;RX complete?
 goto exit_perf ;exit int
 MOVFF RXPTR, FSR0L ;***** Change MOVFP to MOVFF and FSR0 to FSR0L
; movlb 0 ;***** REMOVE
 MOVFF RCREG,INDF0 ;***** Change MOVFP to MOVFF
 clrf WREG ;clr W
 ;***** REMOVED ’, F’
 cpfsgt INDF0 ;value = 0?
 goto end_recv ;yes then end
 incf FSR0L, F ;inc pointer
 ;***** REMOVED ’, F’, Changed FSR0 to FSR0L and specified desti-
nation
 MOVFF FSR0L, RXPTR ;***** Change MOVFP to MOVFF and FSR0 to FSR0L
 goto exit_perf ;return from int
end_recv
 bsf SERFLAG,RXDONE ;set flag
 clrf INTCON ;clear all int
 ;***** REMOVED ’, F’, INTSTA -> INTCON
; movlb 1 ;***** REMOVE
 bcf PIE1,RCIE ;disable rx interrupts
 ;***** Changed PIE -> PIE1
 goto exit_perf ;return
 PAGE

AN726

 1999 Microchip Technology Inc. DS00726A-page 35

;
start
 clrf FSR1L ;assign FSR1 as S.P.
 ;***** REMOVED ’, F’ and Changed FSR0 to FSR0L
 decf FSR1L, F ; /
 ;***** REMOVED ’, F’, Changed FSR0 to FSR0L and
 ;***** specified destination
 movlw 0x20 ;clear ram space
 MOVWF FSR0L ;***** Change MOVFP to MOVWF and FSR0 to FSR0L
start1
 clrf INDF0 ;clear ram
 ;***** REMOVED ’, F’
 incfsz FSR0L, F ;inc and skip if done
 ;***** REMOVED ’, F’, Changed FSR0 to FSR0L and
 ;***** specified destination
 goto start1
 call init_serial ;initialize serial port
 movlw LOW MESSAGE ;load table pointer
 MOVWF TBLPTRL ;***** Change MOVPF tp MOVWF
 movlw HIGH MESSAGE ; /
 MOVWF TBLPTRH ;***** Change MOVPF tp MOVWF
 CLRF TBLPTRU ;***** ADDED this instruction due to larger memory
 ;***** space of PIC18Cxxx Architecture
 call start_xmit ;start transmission
chk_end
 btfss SERFLAG,RXDONE ;receive all?
 goto chk_end ;no then keep checking
;
loop goto loop ;spin wheel
;
 ORG 0x100
MESSAGE
 DATA "The code is: Tea for the Tillerman"
 DATA 0
;
;
 END

 2002 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

 2002 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

WORLDWIDE SALES AND SERVICE

