
PROSPERO EXTENDED PASCAL

LANGUAGE SUMMARY

Contents

    Introduction

    Source text

    Program structure

    Defining data

    Specifying actions

    Expressions

    Built-in procedures and functions

    Object-oriented programming

    Violations, errors and exceptions

Introduction

This online document forms a programmer’s guide to the Extended Pascal language.
It covers all the features of the Extended Pascal standard, together with the provisions
for Object Oriented programming and smaller local additions, and includes
information on run-time exceptions and the provisions for handling them. While the
summary will be found sufficient for most everyday purposes, the more formal
printed Language Reference Manual (often abbreviated to “LRM” in this document)
contains the full and detailed definition.

The descriptions in this document cover all the features provided entirely by the
compiler, including the built-in procedures and functions.  In addition, programs can
take advantage of a large collection of routines which are available in the run-time
library, but whose definitions are not built in; instead they are contained in supplied
“interfaces” that can be imported when required.  The descriptions of these library
routines, together with background information on their use, will be found in the
separate Library Definitions document.



Source text

This section describes how the basic elements of program text are constructed from
letters, digits, and other characters.

    Syntax elements

    Words

    Identifiers

    Word symbols

    Numbers

    Character strings

    Comments

    Special symbols



Syntax elements

When analysing a source text, the compiler treats it as a stream of meaningful elements
known collectively as tokens, interspersed with separators.

There are three kinds of separator: space or tab, end-of-line, and comment.  Tokens are
words, numbers, character strings, characters such as comma or semicolon, or character
pairs.  You can put a separator (for instance a comment) between any two tokens; you
must put a separator (for instance a space or end-of-line) between any adjacent pair of
words or numbers.  It follows that any token, such as a word or number, must be on one
line, and cannot contain any embedded spaces.

As an illustration, the two following programs appear identical to the compiler.  Notice
that the comments placed between braces in the first example are in effect ignored, and
do not affect the actual meaning of the program.

    PROGRAM Hello (output);
      { The well-known example }
    BEGIN
      writeln('Hello world!');
    END {of program}.

    PROGRAM Hello(output);BEGIN
    writeln('Hello world!');END.

See also:

    Words    Identifiers    Word symbols

    Numbers    Character strings    Comments

    Special symbols



Words

A word is a group of one or more alphanumeric characters starting with a letter;
underscore is treated as an alphanumeric character for this purpose.  Words are used as
identifiers to name program elements such as variables and procedures; some names are
part of the Pascal language and are built into the compiler, some may be imported from
libraries, but most are names which you give to items you have introduced yourself.
There is a set of "reserved" words with fixed meanings, such as PROGRAM, BEGIN,
WHILE, REPEAT and END.  The formal term for them is word symbols, and they
cannot be used as identifiers.  You are allowed to re-use the built-in identifiers, though it
is not usually a good idea to do so.

A word starts with a letter, after which there can be any number of further letters, digits,
or underscore characters.  (In some special situations, a name may also start with an
underscore.)  Upper and lower case letters can be used, and the compiler does not make
any distinction, but mixed case is a good way to make a name more meaningful.  Here
are some examples of names:
    ThisItem  surname  PAC12  Offset  spin_doctor
Afterwards you can refer to the first of these names as ThisItem, which is generally the
clearest, but you can use letters in different case such as THISITEM or even thiSitem if
you wish.

While there is no set rule about upper or lower case, it can be helpful to keep to a
convention such as all upper case for word symbols and lower or mixed case for names.

The Pascal standards only allow letters from the Latin alphabet to be included in names.
This implementation will also accept for example accented letters, provided that the
machine on which the software is being used recognises them, but such source programs
will not as a rule be portable to other implementations.



Identifiers

In some cases, the names (or more correctly identifiers) you use in your programs are part
of the Pascal language and are built into the compiler, or have already been defined in
some other way, but most will be names which you give to items you introduce yourself.
For example, you may need a variable to hold the thickness of some metal sheet, so you
give this variable the name Thickness.  Again, if a record includes a field to hold an
internet address, you might give the field the name internet_addr.  In your code you then
use the name to identify the item.

You have a lot of freedom in choosing names, and it is worth devoting some attention to
making them work for you.  Remember that references to variables and record fields tend
to occur more often than to types, so keep the shorter names for them without making
them too cryptic.

For a complete list of reserved words see Word symbols below.

Word-symbols

A full list of word-symbols follows.  Some of them are not defined in the ANSI/ISO
standards, and are not treated as word-symbols if you switch the compiler to a lower
language level.

  ABSTRACT    AND         AND_THEN    ARRAY
  BEGIN       BINDABLE    CASE        CLASS
  CONST       CONSTRUCTOR DESTRUCTOR  DIV
  DO          DOWNTO      ELSE        END
  EXCEPT      EXPORT      FILE        FOR
  FUNCTION    GOTO        IF          IMPORT
  IN          IS          LABEL       MOD
  MODULE      NIL         NOT         OF
  ON          ONLY        OR          OR_ELSE
  OTHERWISE   PACKED      POW         PROCEDURE
  PROGRAM     PROPERTY    PROTECTED   QUALIFIED
  RECORD      REM         REPEAT      RESTRICTED
  SET         SHL         SHR         THEN
  TO          TRY         TYPE        UNTIL
  VALUE       VAR         VIEW        WHILE
  WITH        XOR



Numbers

A number is a group of characters that starts with a digit and follows one of the formats
described below.  (Because you can give names to constant values, and the names then
have the attributes of constants, numeric values written in the program text are called
"numbers" rather than "constants".)  Numbers can introduce values of two main types
into a program: integer or whole-number values, and real or floating-point values.
Integer numbers are normally written in decimal, and may be signed, for example 99,
2000, -20, 0, 107215.  They must not exceed the maximum integer value (called maxint)
which in this implementation is 2147483647.

There is also a form known as an extended number that allows you to introduce an
integer value in a representation other than decimal.  An extended number has two parts,
separated by a # character.  The first part defines the base as a decimal value; often this
will be 16 for hexadecimal, but it can be 2 (binary) or 8 (octal), or indeed any value up to
36.  The second part is the value, which may include letters when the base is greater than
10, as will be familiar from hexadecimal notation (A=10 and so on).  It follows that 255,
16#FF, and 2#11111111 are alternative representations of the same value.

Real (floating-point) numbers are always represented in decimal. There may be a decimal
point; if there is, it must be preceded and followed by at least one digit.  An exponent can
also be specified, and is introduced by a letter E.  These are all floating-point numbers:
    1.25  0.125E1  125E-2  -5.5  2.14159

There is no special format for complex numbers, but you can represent them by means of
a constant expression  such as cmplx(1.5,2.5).



Character strings

A character string in a source text is a sequence of zero, one, or more characters
enclosed between apostrophes.  A string of length one is of type char, other lengths
are of the general string type.  An apostrophe within a character string is represented
by a pair of apostrophes.

Examples:
'x'
'Boyle''s Law'
''

A character string is not restricted to the set of characters used in other tokens, and
can include for example accented letters, but if you are producing a program to run in
console mode the difference between the ANSI and OEM character sets must be
borne in mind.  In the Windows environment, new console mode programs are fairly
rare, but if you have inherited older programs they may have been intended to run in
this mode.  You can use the Workbench to edit such sources, by introducing a
“pragma” into the text.  There is more information on character sets and pragmas in
the full manuals.

A source program is expressed in an 8-bit character set, and there is no special
representation for Unicode strings.  A character string will be stored in the compiled
program in Unicode form if the usage requires it, in particular if it is assigned to or
combined with a widestring variable or formal parameter.

Comments

You can add comments to your program almost anywhere to explain what each part is
doing.  Against a variable called Thickness, for example, you can add a comment to
show that it is held in millimetres.  A procedure or function should generally have a
comment describing the conditions under which it is entered and the results obtained.
Remember, though, that Pascal is a descriptive language provided that you have paid
some attention to choosing meaningful names, and a good name saves adding a
comment at each reference.

A comment begins with a left brace character “{” and is terminated by a right brace
“}”, for example {millimetres}.  An alternative which uses (* instead of left
brace and *) instead of right brace was originally introduced for computers without
the braces in their character set, but is still accepted.  The comment itself can contain
any text apart from right brace or the *) combination.



Special symbols

Special symbols composed of one or two non-alphanumeric characters represent
operators and punctuation.

+       addition, string concatenation, set union
-       negation, subtraction, set difference
*       multiplication, set intersection
/       real division
**      real exponentiation
:=      assignment
=  <>   equal, unequal
<  <=   less than, less-or-equal
>  >=   greater than, greater-or-equal
(  )    list containers, eg parameters
[  ]    index containers, eg arrays
^       pointer dereference
::      type viewing
.       field reference etc
,       list separator
;       terminator, separator
:       list terminator etc
..      range, substring
><      set symmetric difference
=>      export/import renaming



Program structure

The structure of Pascal programs is described in the following sections.  If you are new to
the language, you may wish to skip initially those marked with an asterisk.

    Blocks

Definition parts

Statement part

Scope

    Programs and modules

    Main programs

 * Interfaces and supply

 * Module formats

* Module heading

* Module block

 * Import part

 * Libraries

    Procedures and functions

Procedures

Functions

    Parameters

Value parameters

VAR parameters

Procedural parameters

* Conformant array parameters

 * Signatures



Blocks

Blocks are important ingredients of program structure.  A block has two main parts:
    Definitions and declarations
    Statements (actions)
A main program consists of a heading and a block.  When you define a procedure or a
function, it consists of a heading and a block.

One thing to notice is that among the definitions and declarations there can be definitions
of procedures and functions.  That is to say, you may find a nested structure of blocks,
with some procedures at the same level and others within them (big fleas and little fleas,
as the saying goes).  Here is an illustration of one possible arrangement:
       __________________________________________________
    |              PROGRAM xyz (  )                  |
    |   __________________________________________   |
    |   |       PROCEDURE outer1 (  )            |   |
    |   |________________________________________|   |
    |   __________________________________________   |
    |   |       PROCEDURE outer2 (  )            |   |
    |   |   __________________________________   |   |
    |   |   |   PROCEDURE inner2 (  )        |   |   |
    |   |   |________________________________|   |   |
    |   |                                        |   |
    |   |________________________________________|   |
    |                                                |
    |________________________________________________|

The program xyz directly contains the two procedures outer1 and outer2, and in turn,
outer2 contains inner2.  This is of course just a skeleton, with many aspects omitted.  We
will expand on it when discussing scope.

As well as procedures and functions, the definitions and declarations can introduce new
data types and variables, constants, and labels.  In a definition or declaration you give a
name (an identifier) to each new item; you can only refer to a name after it has been
introduced.

A name has one meaning throughout a block.  In general you can only use the name after
it has been introduced (but see Pointer types).



Definition parts

Within a block, you can introduce and give names to constants, data types, variables,
labels, procedures and functions.  The definitions are grouped into definition parts, which
in classic Pascal were required to come in a specific order.  In standard Extended Pascal
you can put them in any order, and any part can be repeated.  However, for most purposes
when you define one entity in terms of another, the reference must be to a name already
defined; there is a specific exception to this when defining pointer types.

A constant definition part is a group of one or more constant definitions introduced by the
word symbol CONST.  Each definition takes the form of an identifier (which will be the
name of the constant), the symbol =, and a constant expression giving the value.  The
simplest constant expression just consists of a constant, but more complicated ones can
be useful, for instance in building up string constants.  Following is a sample of a
constant definition part.
    CONST   limit = 10;

    tab   = chr(9);
    title = 'Name' + tab + 'Address';   

A type definition part is a group of one or more named type definitions introduced by the
word symbol TYPE, see programmer-defined types.  A variable declaration part is
introduced by the word symbol VAR, and names one or more variables that will be
created when the block containing the declarations is activated, see variable declarations.

For a description of procedures and functions see Procedures and Functions.  A group of
procedure and function declarations, with no intervening definitions or declarations of
other kinds, forms a procedure-and-function-declaration-part.  In Extended Pascal, this
grouping is only significant when considering the forward directive described in
procedures.

You can use a label in Pascal as the destination of a GOTO statement.  A label
declaration part lists one or more labels introduced by the word-symbol LABEL; if there
is more than one, they are separated by commas, and the list is terminated by semicolon.
In standard Pascal labels must be numeric, but this implementation also allows
conventional identifiers, for example:
    LABEL   99, next_item;   
The position of each declared label must be defined by placing it in front of a statement,
followed by a colon, thus:
    next_item:  BEGIN ...   



Statement part

In the statement part of a block, you specify the actions to be performed when the block
is activated.  A main program consists of a program heading and a block, and the
statement part of this block specifies the actions of the program.  A procedure or function
declaration consists of a heading and a block, the statement part of the block specifying
the actions of the procedure or function.  A statement part takes the form of a compound
statement, that is, a list of statements introduced by the word-symbol BEGIN and
terminated by the word-symbol END.



Scope

When there is a possibility of nesting blocks, the question of visibility arises.  Which
statements can access which variables, or invoke which procedures?  One of the
objectives is to make nested blocks self-contained, and secure from outside interference,
but there is also advantage in the code of inner blocks being able to access data of the
enclosing levels.  We can see what happens if we expand the earlier illustration:
    __________________________________________________
    |              PROGRAM xyz (...)                 |
    |                                                |
    |        program-level variables g,h             |
    |   __________________________________________   |
    |   |       PROCEDURE outer1 (a,b..)         |   |
    |   |                                        |   |
    |   |      statement part of outer1          |   |
    |   |________________________________________|   |
    |   __________________________________________   |
    |   |       PROCEDURE outer2 (c,d..)         |   |
    |   |                                        |   |
    |   |      variables x,y of outer2           |   |
    |   |   __________________________________   |   |
    |   |   |   PROCEDURE inner2 (g..)       |   |   |
    |   |   |                                |   |   |
    |   |   |  statement part of inner2      |   |   |
    |   |   |________________________________|   |   |
    |   |                                        |   |
    |   |      statement part of outer2          |   |
    |   |________________________________________|   |
    |                                                |
    |          statement part of program             |
    |________________________________________________|

Here, statements of the main program can access the program-level variables g and h;
they can also invoke procedures outer1 and outer2.  They cannot refer to anything (such
as x, y or inner2) located inside outer1 or outer2.
In the statement part of outer1, the program-level variables g and h are accessible, and
also the parameters a and b.
In the statement part of outer2, the variables g and h are still accessible, and so are its
parameters c and d and variables x and y.  It is also possible to invoke inner2.
In the statement part of inner2, variable h is still accessible, and so are c, d, x and y.
However, inner2 has a parameter called g, and this name takes precedence over the
program-level variable; the program-level g is not accessible.





Main program

The general outline of a Pascal program is:
    PROGRAM name (parameters);
      Definitions and declarations
    BEGIN
      Statement part
    END.
Here, "name" is simply the name you have chosen for the program. The definitions
and declarations introduce data types and variables, also procedures and functions,
which are subsidiary self-contained program actions that you can separate from the
main processing.  The actions of the program are specified in the "statement part",
between the symbols BEGIN and END.  Actions in Pascal are specified by statements,
and the statement part is made up of one or more (sometimes many) statements.

If you wish to use the standard output, input or error files for notifying results or user
interaction, they must be listed in the program parameters using the names output ,
input or errout. You can then address them in writeln or readln statements, for
example writeln('Mission accomplished').   The standard output and
input files do not have to specified by name, as they are defaults when no file is
mentioned, but standard error must be, as in writeln(stderr,'Mission
aborted').  See writeln, readln. 

An important part of programming lies in dividing tasks into pieces of a reasonable
size.  In part, this allows you to keep control, but it is specially helpful when using a
screen editor, in which fairly small sections of the text are visible at one time.  The
outline of a program might be expanded as follows with this in mind.
    PROGRAM name (parameters);
      <Definitions and declarations>
      PROCEDURE Initialize;

...
      PROCEDURE Process;

...
      PROCEDURE CleanUp;

...
    BEGIN
      Initialize;
      WHILE NOT end_of_job DO Process;
      CleanUp;
    END.

For more on this topic see Procedures and Functions.



Interfaces and supply

When a program includes a module, it is necessary for other components to be able to
make use of the services that it provides.  (This is generally the rule, at least; very
occasionally there may be examples of modules that are completely self-contained.)
When writing a module, the programmer gives names to items such as variables and
procedures, just as in a self-contained program.  Some of the names are then published,
by including them in the definition of an interface, and exporting the interface.  An
interface also has a name, and when another component needs to use a service provided
by the module, it imports the interface by name.  The constituents of the interface (the
variables, procedures or other items) can then be used.

When a module X exports an interface that is then imported by another module Y or by
the main program, X is said to supply the other component.  And just as identifiers within
a component must normally be introduced before they can be used, so there must be a
notional order of modules within a program in which the definition of an interface
precedes any import of that interface.  In practice, this is not really restrictive; in a typical
program there might be one or two low-level modules supplying middle-level modules,
one or more of which supply the main program.  The rule places the low-level modules at
the head of the supply chain and the main program at the end, and avoids the possibility
of circular supply (P supplies Q supplies R supplies P, for example), which would make
the independent processing of modules impossible.

For examples of export and import parts see Module heading.



Module formats

A module is made up of a module heading and a module block.  These two parts may be
combined or separate; as a general rule, when a module supplies procedures or functions
it is more convenient to keep them separate, and when it supplies only constants, types or
variables it is better to combine them.  These are by no means hard and fast rules, but the
reason for the preference will be seen shortly.

The overall format when heading and block are combined is like this:
  MODULE  modulename [(parameters)];
    <module heading>
  END;
    <module block>
  END.   
In this form, the whole module is held in a file which is normally called
modulename.pas.  The parts shown as <module heading> and <module block>
are expanded in module heading and module block.

When the heading and block are separate, the heading takes the form:
  MODULE  modulename[(parameters)] interface;
    <module heading>
  END.   
and the block takes the form:
  MODULE  modulename implementation;
    <module block>  END.   
With separate parts, the heading is held in a file conventionally called modulename.hdr
and the block in a file called modulename.pas.  The two parts are associated by having
the same module name.

The purpose of the module heading is to hold all the definitions to be supplied to other
components.  As will be seen, when these includes procedures and functions, the full
declarations are placed in the module block; because they will as a rule require more
amendment and recompilation during development than the exported definitions, keeping
them separate is an advantage.  On the other hand, when there are none, the block is
empty, and the combined form is simpler.

A less common reason for separating heading and block is that you can then have more
than one implementation of the same specification.  You might wish to provide normal
and diagnostic versions, say, or one version that ran faster than the other but demanded
more memory.



Module heading

For the overall layout of a module, see module formats.  Following the MODULE
modulename ... line, the module heading must contain an export part, introduced by
the wordsymbol EXPORT.  The export part names one or more interfaces, and the
constituents they are to include; these may be constants, types, variables, procedures and
functions which are to be made available for use by other components of the program.
Just the names appear in the export list; they must all be given meanings later in the
module heading.  A simple export part might look like this:
EXPORT  iface = (type1, type2, proc, func);   
A module can export more than one interface.  You might wish for instance to supply
some items to several other modules, and some only to the main program.  The word
EXPORT only appears once, followed by one or more interface names and lists of
constituents.  There is a requirement that all the interfaces in the program have distinct
names.

The export list, or lists, quoted the names of constituent items; you now give the
meanings of these names.  One way to do this is by importing from another module, and
handing on the definition.  If there is an Import part it must come immediately after the
export part.  In any case, you can provide definitions within the module, using definition
parts, and the headings (signatures) of any procedures or functions.  The full declarations
of these  procedures and functions will be located in the module block.  Note that in this
context there can be no label declarations.

There will occasionally be a need for a constituent to be known by a name in other parts
of the program that is different from its name within the originating module.  In such
cases it can be renamed when it appears in the export list by placing =>newname after it,
for instance to export Fred renamed as Jim the list entry is Fred=>Jim.

As a shorthand, you can put the word MODULE in an export list, standing for "all the
items defined in this module heading, but not imported items".  This notation avoids
having to update the list whenever a new item is defined.



Module block

For the overall layout of a module, see module formats.  The module block may be
combined with the module heading, or may be separate, in which case it starts MODULE
modulename implementation; and from then on the format is the same.

All identifiers that are imported into, or defined in, the module heading are available for
use in the module block.  This is true whether or not the identifier was exported, and
whether the module heading and module block are combined or separate.

The module block must contain the full declarations of any procedures or functions
whose headings (signatures) were included in the module heading.  In this
implementation, you can repeat the signature in the full declaration, which makes the
program easier to read, particularly when the module block is separate.

Aside from this requirement, you can import into the module block any interface that was
not imported by the heading, you can declare additional procedures or functions, and you
can introduce constants, types and variables at the outer level for use by any of the
routines.  Imports are specified in an import part which must precede any other
declarations or definitions.

A module block can optionally contain an initialization part and/or a finalization part.  An
initialization part takes the form
  TO BEGIN DO <statements>;   
and is obeyed at program startup before the main program is entered.  A finalization part
takes the form
  TO END DO <statements>;   
and is obeyed after completion of the main program.  More precisely, the initialization is
obeyed before that of any module supplied by this module, and finalization after that of
any module supplied.



Import part

You can import one or more interfaces into a block, a module heading, or a module
block.  Because a block makes up most of a main program, procedure or function, this
means that you can import at the program level (which is what usually happens), or (more
rarely) into an individual procedure or function.  Import is specified in an import part; in
a module heading, if there is an import part it must immediately follow the export part;
and in any case an import part precedes other definitions and declarations.

An import part starts with the word IMPORT, followed by one or more interface names,
thus:
  IMPORT  interface1; interface2;   
The effect of this is to bring in all the identifiers contained in the interfaces, together with
their definitions (constants, types and so on, see Interfaces and Supply).  When passing
information from one program component to another, this will often be just what you
want to do, but for some other situations it may well not be satisfactory.

Suppose that you wish to make use of two modules that were not originally intended for
use together.  You need only a few of the constituents of each of their interfaces (and
maybe some of the names you do not need can be confused or even clash with other
names).  You can use selective import to restrict the names to just those you need, for
instance:
  IMPORT  interface1 ONLY (abc, def, gh);

  interface2 ONLY (wxyz);   
Situations such as this occur quite regularly when a single large interface defines the
contents of a library; unselective import could bring in many names that are not needed
and cause confusion.  Importing just the names you plan to use will avoid the problem.

Another option that may be useful when importing two unrelated interfaces is to rename
one or more of the constituents.  The notation is just like the export renaming described
under module heading, for example:
  IMPORT  fuels (petrol=>gasoline);   
Selective import and renaming can be combined:
  IMPORT  iface ONLY (abc=>p, def=>qrs, gh);   
Because extensive renaming can sometimes result in a program text that is correct but
hard for human readers to understand, another option may be considered.  With qualified
import you can keep the names brought in from an interface in a private scope.  The
import is written like this:
  IMPORT  iface1 QUALIFIED; iface2 QUALIFIED;   
After this, you must precede every reference to an imported name with the interface name
and a period, for instance:
    iface2.proc (total, iface1.nominal);   
The result is clear and explicit but more verbose, and the advantage will vary from one
situation to another.



Libraries

An important use of Extended Pascal modules is in the construction of libraries.  The
compiled object files from the modules which are to make up a library can be collected
by a librarian program, such as ProLib.  In addition, the user of the library will need
collected interface definitions or "prototypes".  From these definitions, the user can
obtain constants and types, as well as the signatures of procedures and functions.

You can use a module to collect and amalgamate interface information.  This module
might contain a few definitions such as an identification of the library version, but most
of the material will simply be imported and re-exported, possibly with some selection or
renaming.

In this implementation, there is an additional shorthand to assist in library construction.
When an interface is imported QUALIFIED, the interface name can be quoted in an
export list, with the meaning "all the details imported from this interface, without any
renaming or selection".



Procedures and Functions

These are fundamental building-blocks of Pascal programs, hinted at in the description of
a Main program.  A range of built-in procedures and functions are provided as part of the
language, but we are concerned here with defining your own to structure your programs.

To start with, let us look at the circumstances in which they help you.  For one thing, they
allow you avoid repetition.  When you have a subsidiary task to be performed in more
than one part of your program, you can formulate it once and save code.  But another
excellent reason is that you can organise and structure any non-trivial program in a way
that allows you (indeed, encourages you) to concentrate on one part at a time.  Divide and
rule is how many people express it.

We will look further at writing procedures and functions that form parts of your own
programs, but another aspect is just as significant.  They allow you to use re-use your
own code, and to employ code produced by others.  Some of the built-in features of the
language are accessed "as if" they are procedures or functions, and the libraries supplied
with the compiler contain code to perform other useful tasks.  You can build libraries of
your own handy algorithms, and when you have discovered the essentials of object-
oriented programming at least some of your libraries may well take the form of classes.

Procedures and functions have important features in common, but they are used in rather
different ways.  A procedure is a section of code that performs a sub-task; it is activated
by a procedure statement.  Control is passed to the procedure, and on completion
normally returns.  By means of parameters it can be given different data to work on at
each activation.  A function evaluates a result; it is activated from an expression, and
returns the result as an ingredient of the expression.  Again, it will in most cases have one
or more parameters that provide different data as input to the process each time.

Apart from those which form part of the Pascal language, the name and "signature" of
any procedure or function must be known before it can be used.  The definition may be
part of the program or module, or the details may be imported as a constituent of an
interface.



Procedures

The definition of a procedure takes the form of a heading and a block.  The heading starts
with the word PROCEDURE and the name by which it is to be known; if the name tells
what the procedure does, it makes the program much easier to read.  There may then be a
list of parameters to modify the action of the procedure or allow it to return results.
When there is a parameter list, it is enclosed in parentheses.  Following are some
examples of procedure headings:
    PROCEDURE Initialise
    PROCEDURE MakeNewCustomerRec

  (name: string; ref: integer;
   VAR NewRec: PCustomerRec)

    PROCEDURE OpenDatabase (VolId: integer)   

In a procedure declaration, the commonest use, the heading is followed by a semicolon
and a block.  The block contains definitions of any constants, variables or other items
(including other procedures or functions) which are needed by the procedure but not
outside it.  Then there is a "statement part" that specifies the actions of the procedure.
The statements in the statement part can refer to the parameters, and to any items
introduced by definitions or declarations in the block; they can also refer to items such as
constants or variables introduced in the containing block or blocks (unless the names of
such items have been hidden - see Scope).

A procedure is activated by a procedure statement, which consists of the procedure name
and, if the procedure has a parameter list, corresponding actual parameters.  See
Parameters.

Procedure headings occur in other situations than in the procedure declarations described
above.  Suppose for instance that you wish to write two procedures A and B which may
call one another.  The need to avoid forward references would forbid either from being
the first, but you can introduce one with a forward declaration consisting of its heading
and the directive forward, thus:
    PROCEDURE B ( ... ) forward;
    PROCEDURE A;
      ...
    PROCEDURE B ( ... );
      ...
The first occurrence of the heading of B enables the compiler to process correctly a call
of B within the body of A.  There must be no CONST, TYPE, VAR or LABEL
definitions between the forward heading of B and the full declaration.  The Pascal
standards do not allow repetition of the parameter list when the heading of B comes
again, but this implementation allows it - see Signatures.



Other situations in which the heading of a procedure appears without the block are when
the procedure is exported from a module (see Module heading) and in the definition of a
class as described in the introduction to Object Oriented programming.

Functions

Many of the remarks about procedures apply also to functions.  A function is composed
of a heading and a block, it may have parameters, and the heading or signature can appear
separately as a forward declaration, or in a module heading or class type definition.
There are however differences.  In the first place, a function produces a result, and the
heading includes the type of this result.  Also, while a procedure is activated by means of
a procedure statement, a function is activated by being named in an expression, and the
result it returns becomes an operand in the expression.

The following examples show the form of function headings:
    FUNCTION area (a,b,c: real): real;
    FUNCTION Daylight (ts: TimeStamp): integer;
    FUNCTION NewCustomerRec (name: string; ref: integer)

     = NewRec: PCustomerRec;

In the body of the first of these functions (which we can assume is to compute the area of
a triangle having sides length a, b and c) a value must be given as though to a variable
called area; this is the value that the function will return.  More than one value may be
assigned during the execution of a function, and the last will be the value returned.  In the
second function, similarly, a value must be assigned to Daylight (being say the minutes
between sunrise and sunset on the date given by the TimeStamp parameter).  In the third
example, the result variable is given the name NewRec, different from the name of the
function itself; this is a feature of Extended Pascal that allows the result to be referenced
within the function.  (Using the function name implies the function calling itself.)

While many functions produce results of simple types such as integer or char, it is also
possible to define a function that returns a record or an array, provided it does not contain
any embedded file.



Parameters

Parameters allow you to provide different data to a procedure or function at each call.  In
the heading of the routine, there is a list giving the names and types of formal parameters.
The names are local to the routine, that is, they can be referenced by statements within
the routine but not from outside; the types must be named types, not new type definitions.
At each call, a matching list of actual parameters must be supplied.  For example, the
procedure:
  PROCEDURE Famous (name: string; born,died: integer)   
might be activated by these calls:
    Famous ('Blaise Pascal', 1623, 1662);
    Famous ('Isaac Newton', 1642, 1727);   
    Famous ('Alfred, Lord Tennyson', 1809, 1892);

Parameters that pass data to a procedure can be value parameters or variable parameters;
because the latter are introduced by the word symbol VAR they are often referred to as
VAR parameters.  The majority of parameters are of these two kinds, but Pascal also
provides two other forms, procedural parameters and conformant array parameters.



Value parameters

With a value parameter, you pass the value of an expression to the procedure or function
being called.  The actual parameter can be a constant or variable, or the result returned by
a function, or when appropriate to the type it can be the outcome of a computation.  The
requirement is that the type of the expression must be assignment compatible with the
type of the formal parameter.  The parameter is in effect a local variable which is given
the value of the expression as part of the process of implementing the call.

For example, the fictitious function:
  FUNCTION match (a,b: real): Boolean   
has two value formal parameters a and b, and returns true if their absolute values agree
within one percent of the average.  The function might be called in several ways:
    IF match(x, 0.5) THEN ...
    WHILE match(sqr(sin(v+e))+sqr(cos(v-e)), 1) DO ...
    assert(match(p1,p2), 'Mismatch');   
In these calls, you can see some of the possible kinds of actual parameter, including the
integer constant 1 which is assignment compatible with real type.  (See assert.)

A formal value parameter of string type can be either one defined as a named type with a
specified capacity, or the schema name string, for example:
  PROCEDURE PrintName(name: namestring; address: string);   
An actual parameter corresponding to name must not exceed the length defined as
namestring, whereas address can accept effectively unlimited length (to be precise, not
exceeding 32760).  Again, the actual parameters are string expressions:
    PrintName(FamilyName+', '+FirstName,

      StreetAddr+'/'+Town+'/'+PostCode);   

You can pass structures such as records and arrays as value parameters.  The
corresponding actual parameter can then be an existing variable or a constructor.  If the
actual is an existing record or array, the implication is that a copy of the structure is made
as part of the process of calling and entering the procedure or function.  To allow the
routine to examine a structure without "threatening" it you can use a PROTECTED VAR
parameter (see VAR parameters).

A formal value parameter can be designated PROTECTED.  There is less obvious
advantage than with VAR parameters, but it can be useful as indicating that the routine
will not modify the value passed to it.

The rule of assignment compatibility does not allow a file (or indeed any structure which
contains a file) to be passed as a value parameter.  A file must always be passed as a
VAR parameter.



VAR parameters

While a value parameter allows the value of an expression to be passed to a procedure or
function, a variable (VAR) parameter must be matched by an actual which is a variable
acess.  This phrase describes a reference to a single variable, or array element, or record
field, or pointer domain, or combination of these.  The access, however arrived at, must
be the same type as the formal parameter.  For example, in the heading:
  PROCEDURE MakeNewCustomerRec (name: string; ref: integer;

VAR NewRec: PCustomerRec)   
copied from Procedures, the NewRec is a VAR parameter through which the procedure
returns a pointer.  In a call of this procedure, the actual parameter corresponding to
NewRec must be a variable (or element or field) of the type PCustomerRec.

That example assumes a naming convention in which PCustomerRec is used for the type
of a pointer which points to a CustomerRec record.  It is fairly common also to use a
VAR parameter with a structured type, such as CustomerRec.  The distinction is that
when returning a pointer, we assume that the procedure makes a new record in the heap
and gives back to the caller a pointer to the new record.  However, when the formal
parameter type is the record type, the caller must already have allocated a record, and
statements in the procedure can refer to and modify that record.

You can define a VAR parameter that gives the procedure or function effectively read-
only access to the actual parameter.  The word symbol PROTECTED has this effect, for
example:
  PROCEDURE PrintCustomerRec (PROTECTED VAR crec:
                               CustomerRec)   

The requirement that the formal and actual parameters have the "same" type means as a
general rule that they must have exactly the same named type.  Further, the actual
parameter must not be a component of a PACKED structure if different storage has been
allocated than for a single variable.  However, in the case of schematic types (which
includes strings), a somewhat different rule applies.  Certainly, the same named type is
still valid, but for example two types separately defined as "string(10)" are also the
"same" type - see Schema types.



Procedural parameters

With a procedural (or functional) parameter, you can pass a procedure (or function) to a
called routine, rather than data to work on.  The formal parameter is a procedure or
function heading, when the routine is called you pass a matching actual procedure or
function, and the code in the routine to which the parameter is passed can invoke the
parameter.

This may sound rather involved; take an example.  Suppose a procedure SmartPrint
accepts text and formats it.  With a VAR file parameter it could be passed alternative
input files each time it is called, but that requires the input to be always in the form of a
file.  If instead the procedure has a parameter that is a function, the input could come
from other sources.  You could define SmartPrint like this:
  PROCEDURE SmartPrint (FUNCTION NextCh: char);   
When SmartPrint is called, it is passed a function that returns characters.  Sometimes the
function in fact reads the characters from a file, but in other calls the function passed
might be one that takes its data from memory (or even makes it up at random).  The code
in SmartPrint simply calls NextCh to produce characters.

The rules for matching formal and actual procedural parameters are set out in LRM 8.2.4.

Conformant array parameters

Conventional array types in classic Pascal are fixed in size, and a procedure that
processes arrays is of restricted use if it can only accept as parameter the same size array
at each call.  To avoid this difficulty, the original Pascal standard had an optional feature
called "conformant array parameters".  The Extended Pascal standard introduced schema
types, which among other things allow parameters of various sizes to be passed.  In the
conformant array option, the index bounds of the actual parameter are automatically
supplied, and can be used by the statements of the called routine.  The details are set out
in LRM 8.2.5.



Signature

To generate a correct call of a procedure or function, the compiler must know (a) its
name, and (b) the kinds and types of its parameters; if it is a function, it must also know
(c) the result type.  Note that it does not need the names of the parameters, though these
are of course required when processing the body, and at this time also the name of the
result variable of a function if this has been specified.

The signature of a procedure or function is a combination of these requirements, which is
in fact the information in the heading (see procedures and functions).  In the most
common situation, the heading is immediately followed by the body of the declaration,
but there are other places in which the heading appears separately: forward-declared
procedures, exported procedures, and methods.  The signature then serves to ensure that
calls match the definition.  For further details see Procedures and LRM 8.1.4.



Defining data

This section introduces some basic concepts, then lists the predefined (built-in) data types
and describes how to define your own data layouts, and finally shows how to introduce
variables into your programs.

    The concept of type

    Type compatibility

Compatible types

Assignment compatible types

    Values, variables and constants

    Initial values

    Predefined types

    Programmer-defined types

Enumerated types

Subrange types

Array types

Record types

Set types

File types

Pointer types

Schema types

    Variable declarations

    Accessing variables



The concept of Type

Pascal is what is known as a “strongly typed” language.  Every item of data possesses a
type, which may be one of the predefined types or a new type which you define yourself
to describe the data in your program (so-called new types).    The type determines which
operations can be performed on the item, and what effect the operations have.  Because
all data within the computer is ultimately composed of binary groups, there would be
plenty of scope in an untested program for attempting nonsensical operations which
produced bogus results that were in turn passed to other processes.  The task of
unravelling such tangles can be enormous, and while some can still arise, strong typing
does help greatly by trapping many potential errors before execution of the program is
even attempted.

The classic Pascal standard for the most part only employed types that could be defined
at compile time; such aspects as array sizes and string lengths had to be fixed (though see
Conformant array parameters).  In Extended Pascal, you can introduce schema types
which are families of related types from which individuals can be selected at run time.
An example might be a family of one-dimensional arrays with lower and upper index
bounds supplied either as compile-time or as run-time values.

Like programmer-defined schemas, string and widestring types are defined to have a
capacity that can be chosen either at compile time or at run time.  Formal string
parameters can be specified that adapt to the capacity of the actual parameter at each call.

In Extended Pascal, you can also associate an initial value (more properly known as an
initial state) with a type.  When any variable, array element or record field that possesses
the type is created, the initial value is assigned to it, unless overridden in the declaration
of the individual item.



Type compatibility

Pascal uses the concept of type to control associations within a program, and help you to
eliminate mistakes at an early stage.  There are two kinds of situation in which it applies.
The first is concerned to ensure that for example like is compared with like, and that an
index value matches the type of the original index definition.  In these situations, the two
types must be what is known as compatible.  This is a symmetrical relationship between
two types.

The second situation covers the assignment of a value to a destination such as a variable,
element or field, avoiding for instance a day of the week such as Monday being supplied
where a day in the month was intended.  The assignment may take the form of an
assignment statement, or it may be an equivalent such as the passing of a value
parameter.  The type of the value and that of the destination must be what is called
assignment compatible.

Compatible types

This is a symmetrical relationship; if type t1 is compatible with type t2 then t2 is
compatible with t1.  The two types are compatible if at least one of the following is true:
    1   t1 and t2 are the same type
    2   t1 is a subrange of t2, or vice versa, or both

are subranges of the same host type
    3   both are string or character types
    4   one is a pointer type and the other is type ptr
    5   both are set types with the same base type and

neither or both is packed
    6   both are class types.

A particular consequence of 2 is that subranges of integer such as shortint are compatible
with integer and with each other.  See Subrange types.

In 3, widestring and conventional string types are separately compatible, but not with
each other.

In connection with 4, type ptr is not part of standard Pascal.  However the constant NIL
is, and is compatible with all pointer types.  Two pointers can be compared if (by 1) they
have the same type, or (by 4) one is NIL or has type ptr.  See Pointer types.

Note that arithmetic operations have their own rules.  The operands may be compatible,
but it is not a requirement.



Assignment compatible types

Assignment compatibility concerns the values that it is sensible to store in a destination,
for instance a variable.  If tl is the type of the left-hand-side of an assignment and tr is the
type of the right-hand-side, then tr is said to be assignment compatible with tl if at least
one of the following is true:
    1   tl and tr are the same type, and it is an

assignable type (see below)
    2   tl and tr are compatible ordinal types,

string types, or pointer types (see below)
    3   tl is real type and tr is integer
    4   tl is shortreal and tr is real or integer
    5   tl is complex and tr is real or integer
    6   tl and tr are compatible set types
    7   both are class types and tl is the same as

or an ancestor of tr.

An assignable type (see 1) is a type which is not a file type, nor a structured type
containing a file.

In 2, the standard specifies some additional restrictions which can usually be checked
only when the program is run; they would often be regarded as "run time errors".
Essentially, they are overflow conditions such as assigning a value to a string variable
whose capacity is insufficient.  In this implementation you can request run-time checks to
trap such mistakes, otherwise the value is simply truncated.

A widestring or a conventional string expression can be assigned to a widestring variable.



Values, variables and constants

The actions of a program work with values.  For example, an arithmetic add operation
that takes the value 12 and the value 20 will produce the value 32.  When you write 20 in
your program, you are introducing a constant whose value is always 20.  A variable on
the other hand is a container for a value; you can put a value into the container and get it
back again later.  If you put the value 12 into a variable, and then define an operation to
add the contents of the variable and the constant 20, the result will be the value 32.

A value that is the result of an operation can be treated in one of two main ways: it can be
used immediately, or it can be put into a variable for use later.  An example of immediate
use of the result of adding 12 and 20 might be to multiply it by another value; or it may
be needed as an input to another process (a parameter).  Occasionally, you may simply
throw away the result, but that would only be sensible if the operation had some
additional effect.

Many of the values used in programs are numeric, but they can be of other kinds, or to
use the proper term other types.  You will probably often introduce character string
values into your programs, for instance 'Hello world!' is a constant whose value is
a character string.  You can introduce a variable to hold character string values, put a
value into it, and get it back later, just as with a numeric variable.  A character string is
however different from a numeric value in having an internal structure, namely a
sequence of characters, and you can refer to individual characters or groups of characters
as well as to the complete value if you wish.

The same ideas apply to other structures.  If you introduce a new composite data structure
that is convenient to work with, you can introduce variables to hold these structures, and
in many cases you can also define constant values.  Extended Pascal tries to provide
uniform facilities, and to avoid exceptions, but constants of some data types (such as
files) would not be sensible.

Pascal programs use names, or more correctly identifiers, to refer to many of the things
that make up programs.  A variable always has a name, and a constant may have one.  It
may be helpful to give a name to a constant when it shows its purpose (such as title or
MaxSize), or when the same constant is used in several places.

See also The concept of type and Identifiers.



Initial values

An initial value, more correctly called an initial state, can be associated with a type, or
can accompany the declaration of a variable.  The initial value in a variable declaration
overrides any that may be associated with the type of the variable.  An initial value is
introduced by the word symbol VALUE, and must be a constant or constant expression.

For example:
 TYPE  intz = integer VALUE 0;

ThreeCols = (red, green, blue) VALUE red;
  VAR   count: intz;

index: integer VALUE 1;
hue: ThreeCols VALUE blue;

Here, the variable count will be initialised to 0, index to 1, and hue to blue
(overriding the default associated with the type ThreeCols).

The initial state is established when a variable is created.  For an outer-level variable, this
is before the program starts; for local variables of procedures, it is when the procedure is
activated (so they are initialised at every call).  Variables in the heap are created by the
procedure new.

Initial values can be specified for strings, arrays and records, as well as for simple types
such as those above.  The value for an array, record or set is given by a constructor
containing only constants; alternatively, the fields in a record definition can include
individual values.  Here are a few more examples:
  TYPE  string10 = string(10) VALUE '';
        recptr = ^trec VALUE NIL;
        trec = RECORD
                 next: recptr;
                 a,b: intz;
                 c: char VALUE '*';
               END;
  VAR   recp: recptr;
Any variable of type string10 will be created as an empty string.  The variable recp
will initially contain NIL.  After new(recp), it will point to a record with field next
set to NIL, fields a and b set to zero, and field c set to asterisk.



Predefined types

The following predefined types are provided:

    BindingType    Boolean    byte    char    complex    DaysOfWeek

    FileNameType    integer    real    shortint    shortreal    shortstring

    string    text    TimeStamp    wchar    widestring    word

integer

Kind:   Predefined type  (all levels)

Values of integer type are whole numbers; the largest integer is given by the predefined
constant maxint, which in this implementation is defined as 214748367.  Values in the
range -maxint to +maxint are correctly handled.  The particular case of -maxint-1
(hexadecimal 80000000) is not well-behaved, for instance it overflows when negated,
and is sometimes used to represent "undefined".  (LRM 6.1.1.1.1)

Variables of type integer occupy 4 bytes (32 bits).  Subranges of integer, such as word,
byte, or suitable programmer-defined subranges, take less space in PACKED arrays or
records.

word

Kind:   Predefined type

The type word is predefined as a subrange of integer accommodating values from 0 to
65535, that is, unsigned 16-bit whole numbers.  It is provided for convenience, and has
no special properties beyond those which apply to programmer-defined subranges.
(LRM 6.1.1.1.1 and 6.1.1.3)

Components of packed arrays or records declared as word type are allocated two bytes,
and are automatically extended when involved in calculations.  Individual variables, or
components of non-packed structures, are in most cases allocated four bytes for
efficiency reasons, but are assumed to hold values within the defined subrange.
Assignment range checks can be applied.



shortint

Kind:   Predefined type

The type shortint is predefined as a subrange of integer accommodating values from
minus 32768 to 32767, that is, signed 16-bit whole numbers.  It is provided for
convenience, and has no special properties beyond those which apply to programmer-
defined subranges.  (LRM 6.1.1.1.1 and 6.1.1.3)

Components of packed arrays or records declared as shortint are allocated two bytes, and
are automatically extended when involved in calculations.  Individual variables, or
components of non-packed structures, are in most cases allocated four bytes for
efficiency reasons, but are assumed to hold values within the defined subrange.
Assignment range checks can be applied.

byte

Kind:   Predefined type

The type byte is predefined as a subrange of integer accommodating values from 0 to
255, that is, unsigned 8-bit whole numbers.  It is provided for convenience, and has no
special properties beyond those which apply to programmer-defined subranges.  (LRM
6.1.1.1.1 and 6.1.1.3)

Components of packed arrays or records declared as type byte are allocated one byte of
storage, and are automatically extended when involved in calculations.  Individual
variables, or components of non-packed structures, are in most cases allocated four bytes
for efficiency reasons, but are assumed to hold values within the defined subrange.
Assignment range checks can be applied.



real

Kind:   Predefined type  (all levels)

Values of type real are signed floating-point quantities, with magnitude in the range from
minreal to maxreal.  The predefined constants minreal and maxreal in this
implementation have values which are approximately 5E-324 and 1.8E+308 (see below).
Real values are held internally to a precision equivalent to slightly less than 16 decimal
digits.

Variables of type real occupy 8 bytes of storage in the format employed by the numeric
processor.  The related predefined constants are approximated by:
    maxreal     1.8E+308
    minreal     5.0E-324
    minrealn    2.2E-308
    epsreal     2.2E-16   
(Here, minrealn is the smallest normalised real and minreal is the value below which
underflow is signalled.)

shortreal

Kind:   Predefined type

Variables (and more particularly array elements) of type shortreal can be used to
economise on storage when the range and/or accuracy of type real are not required.  They
can accommodate floating-point values with a range of approximately 1.1E-38 to
3.4E+38, and held to a precision equivalent to slightly more than seven decimal digits.
They occupy four bytes of storage rather than eight.

All computations are carried out with a range and precision greater than that of type real,
and a reference to a shortreal variable automatically extends its value to the
computational format.



complex

Kind:   Predefined type  (EP standard)

Values of complex type are complex numbers; functions are provided which produce a
complex value from a pair of real values, or yield the constituent parts, using either
Cartesian or polar notation.  The standard does not require any particular internal
representation, but this implementation uses Cartesian form, with the real and imaginary
parts each being of type real.

You introduce complex constants as constant expressions which involve one of the
functions cmplx or polar, and you display complex values by separating the real and
imaginary parts (functions re and im), or the polar components (abs and arg), and
showing them as two real values.  (LRM 6.1.1.1.3)

Boolean

Kind:   Predefined type  (all levels)

Values of Boolean type are either false or true; there are predefined constants false and
true whose ordinal values are 0 and 1.  Comparison operations return a Boolean result,
and these and other Boolean values can be combined using the operators AND and OR.
A Boolean value is required in IF, WHILE and REPEAT statements to decide the action
of the program, for example:

  WHILE (j < 10) AND (k <> 0) DO ...

Boolean variables occupy one byte of storage.



char

Kind:   Predefined type  (all levels)

Values of type char are characters; the constant maxchar is the value of type char
with the greatest ordinal value.  In this implementation, characters are 8 bits, having
ordinal values in the range 0 to 255 (so that ord(maxchar) = 255).  The optional
checks for undefined references use maxchar itself as "undefined".

The function ord can be used to obtain the ordinal value of a character, and function
chr to obtain the character corresponding to an ordinal or a Unicode character.  You
can define fixed strings and variable strings of characters with their own properties.

Programs in this implementation may use either the ANSI or OEM character set, as
described in 1.10 of LRM.

wchar

Kind:   Predefined type

Values of type wchar are "wide" 16-bit Unicode characters. The function ord can be
used to obtain the ordinal value of a wide character, function wchr to obtain a wide
character from an ordinal or an 8-bit character, and function chr to obtain the 8-bit
character corresponding to an ordinal or a Unicode character.  You can define a string
of Unicode characters as type widestring.

text

Kind:   Predefined type  (all levels)

A variable of type text is a textfile, which can be associated with an external file and
then used to access that file.  There are procedures and functions to make the initial
association, to prepare for input or output, and to read or write.  (See for instance
OpenRead, OpenWrite, readln, writeln.)   Standard input, standard output, and
standard error are predefined textfiles that are prepared for use by the run-time system
if their names are listed in the program parameters, and can be read or written using
the same procedures.

Note that by default the type text is not bindable, and if a variable is to be associated
with a named external file you must specify BINDABLE text.



DaysOfWeek

Kind:   Predefined type

This is an enumerated type defined by:
  DaysOfWeek = (Sunday,Monday,Tuesday,Wednesday,Thursday,

Friday,Saturday)   
It is used in the definition of TimeStamp, but is not limited to that application.

TimeStamp

Kind:   Predefined type  (EP standard)

This type is defined as follows.
  TimeStamp = PACKED RECORD

DateValid,
TimeValid: Boolean;
Year: integer;
Month: 1..12;
Day:   1..31;
Hour:  0..23;
Minute:  0..59;
Second:  0..59;
Millisec:  0..999;
WeekDay: DaysOfWeek;

      END;   
The fields Millisec and WeekDay are not part of the standard definition.  (LRM 6.1.2.2)

TimeStamp is used by procedure GetTimeStamp and functions date and time.  See also
DaysOfWeek.



BindingType

Kind:   Predefined type  (EP standard)

This type is defined as follows.
  BindingType = PACKED RECORD

  name: FileNameType;
  bound: Boolean;
  existing,
  readonly,
  exclusive: Boolean;
END;   

The fields existing, readonly and exclusive are not part of the standard definition.  They
are provided in order to give some control over file selection without resorting to
implementation-specific values.  (LRM 6.1.2.2)

BindingType is used by the procedure bind and returned by the function binding.  See
also FileNameType.

FileNameType

Kind:   Predefined type

This type is defined as a string which can accommodate the longest normal file
pathname; in this implementation it is string(260).  (MAX_PATH)



string

Kind:   Predefined type  (EP standard)

The string types are a family of types whose common property is that they are strings of
characters.  When declaring a variable, or field of a record, you select a member of the
family as the type of the variable or field by specifying a capacity, that is, the longest
string you wish to accommodate, for example string(50).  Often, the capacity will be
a constant, but a variable such as a parameter can be specified when defining the capacity
of a local variable.  The essential point is that it must be a value that is defined by the
time the string is created.

A formal parameter can be declared to be a string without a specified capacity.  In such
cases, the capacity is taken from the actual parameter, and can be different at each call.  A
VAR formal parameter, for instance, adopts the capacity of the variable that is the actual
parameter.  If the procedure GetNextLine is defined as

  PROCEDURE GetNextLine (VAR line: string)

then within the procedure, the reference line.capacity will produce the capacity of
the actual parameter specified by the caller, and suitable action can be taken if it is liable
to be exceeded.  You can also declare a pointer type as ^string, and you then supply a
capacity in the call of new.  Again, it can be different each time.

A reference to a string variable, field or parameter yields a value of the general string
type that can be included in string expressions; it can be concatenated with other string or
character values, and can be passed to procedures or functions that require a string value.
String concatenation is specified using the + operator.  Substrings can be referenced with
a [j..k] notation, and may be either source or destination.  For more details on declaring
and using strings see LRM 6.1.2.5 and the String handling procedures and functions.

shortstring

Kind:   Predefined type

Like string types, the shortstring types are a family with the common property of being
strings of 8-bit characters.  You can use them in the same way as the default strings, but
they are provided mainly to give continuity with older programs that contain assumptions
about the layout of strings in memory.  For more details refer to LRM 6.1.2.5.



widestring

Kind:   Predefined type

Like string types, the widestring types are a family with the common property of being
strings; however, in this case they are strings of "wide" (16-bit) Unicode characters rather
than 8-bit characters.  You can declare variables and fields in the same way as with the
standard string type, by supplying a capacity, for example widestring(99).  You can
also use the unqualified name as the type of a VAR formal parameter, or the domain type
of a pointer.

Because each 8-bit character has an equivalent Unicode character, conventional string
values can be assigned to widestring destinations (variables, fields, etc) and conversion
can be supplied automatically.  Comparisons between widestring variables, or
widestrings and conventional string values, can also be performed by the functions eq and
ne; a conventional string is automatically converted, and the two Unicode strings are
compared.  Conversion in the other direction is performed by the function WideToStr,
and may involve substituting a default (usually '?') for Unicode characters with no 8-bit
equivalent.

In other respects there are differences between the use of widestrings and conventional
strings.  Concatenation cannot be performed using an operator, though the insert
procedure is available and can often serve a similar purpose.  For more details refer to
LRM 6.1.2.6.

See also:

    wchar    chr    wchr    delete    insert    length    setlength

    IsAlpha    IsDigit    LowerCase    UpperCase



Programmer-defined types

As well as using the predefined types such as integer and char, you can define and use
new types of your own that describe the data in your program.  Indeed, defining your data
is an important aspect of software development, and deserves attention just as much as
coding the algorithms.

The definition of a new type can be treated in one of two ways.  It can be given a name,
which is equated to the definition in a type definition part (see below), or it can be written
where it is needed as the type of a variable, array element or field.  There are some
situations in which a type name is required, for instance any formal parameter of a
procedure or function must have a named type; if you do not name a new type you cannot
use it for these purposes.  It is therefore usually a good idea to name data types, and in
any case it will help to make your source text clear and meaningful.

A new type can be defined simply as a synonym for a predefined or previously-defined
type, and this can be more useful than might at first appear.  One important aspect of new
types that was introduced in the Extended Pascal standard is the possibility of attaching a
default initial value to a type.  (You can override the default subsequently if you wish.)
So for instance, you could define boolf thus:
  TYPE  boolf = Boolean VALUE false;   
The new type has the attributes of Boolean, and in addition has the associated default
initial state false.

Here is an example of a type definition part that introduces an array and a string:
  TYPE  vector = ARRAY [1..100] OF real;

nametype = string(50);   
The array type with the name vector has 100 real elements, and the string type called
nametype has a capacity of 50 characters.

There are a several kinds of new type you can introduce:

    Enumerated types Subrange types

    Array types Record types

    Set types File types

    Pointer types Schema types       Class types  

The ways in which types are used is the subject of

    Type denoters



Enumerated types

An enumerated type introduces an ordered set of values by listing a name for each value.
For example, you could write:
  TYPE rainbow =
       (violet,indigo,blue,green,yellow,orange,red);   
The names in this list have two main properties.  The first is that they are all associated
with the type; if you declare a variable of type rainbow, the only values it can contain are
the names in the list.  The second property is that they are ordered, in the sense that blue
(for instance) follows indigo and precedes green.

An enumerated type is an ordinal type, that is to say, the values of the type map onto a
succession of numbers.  The first value (violet in the example) has ordinal value 0, the
next (indigo) has ordinal value 1, and so on.  You cannot perform arithmetic on the
enumerated values directly, but you can compare them, and there are functions that allow
you to work with them.  In the rainbow enumeration, (blue > indigo) is true, and
so is (blue < red).  The function pred gives the previous value, so that
pred(blue) is indigo, and succ gives the next - successor - value, so that
succ(yellow) is orange.  You can also skip values; succ(blue,3) is also orange.
The function ord gives the ordinal corresponding to an enumerated value.

Enumerated types are an important aid to security in large programs.  Using them helps to
trap mistakes such as giving the day of the week instead of the day of the month.  The
compiler can reject such cases, and you avoid finding them (or even, not finding them)
while testing your program.

The predefined type DaysOfWeek is an enumerated type that you are free to use.



Subrange types

A subrange, as the name suggests, defines part of the range of an ordinal type, known as
the host type.  Commonly, subranges have integer as their host type, but you can define
subranges of other ordinal types such char or enumerated types.  The definition specifies
the lower and upper bounds separated by the ".." symbol.

Examples of subrange types:
  0..9              ( host type integer )
  '0'..'9'          ( host type char )
  Monday..Friday    ( host type DaysOfWeek )   
The predefined types byte, word and shortint are also examples of subranges whose host
type is integer.

When you refer to a variable or element having a subrange type, its value is treated as
being of the host type.  For subranges of integer, this means that the value is expanded (if
necessary) to 4-byte width before taking part in a calculation or being passed as a
parameter.  The code generation may assume that the value lies within the subrange.
When a value is assigned to a variable or element having a subrange type, you can
request the compiler to insert a check to ensure that it is indeed within the subrange
bounds.

Subranges are often defined with constant bounds (for instance 0..9 above), but you can
also have bounds which are defined at run time.  Most often, such usage is associated
with defining arrays whose size is not known at compile time, as described in Schematic
arrays, but a subrange with variable bounds can have other uses such as in indexed (direct
access) files.



Array types

An array type defines a number of elements of the same type, individual elements being
selected by an index.  You can define arrays of simple types, such as integer, char or real;
or the elements can be records, strings, or other arrays.  The index is often numeric, but
the elements can be chosen by enumeration values, characters, or any ordinal type.  In the
definition of the type, the index type determines the number of elements in the array.

The following examples show a few of the possibilities:
  TYPE  subr = 1..100;         (defines a subrange)

iarray = ARRAY [-10..+10] OF integer;
vector = ARRAY [subr] OF real;
spectrum = ARRAY [rainbow] OF real;

Here, the array iarr has 21 integer elements, and vect has 100 real elements.  The type
rainbow was an example of an enumerated type, and spectrum is an array with one real
element for each of the enumerated values violet to red; it might be used to hold
wavelength values, say.

You can define arrays of other element types, and multi-dimensioned arrays, for instance:
  TYPE  str10 = string(10);    (defines a string type)

starray = ARRAY [DaysOfWeek] OF str10;
dtarray = ARRAY [0..4] OF TimeStamp;
twodims = ARRAY [2..5] OF vector;
matrix = ARRAY [2..5,subr] OF real;

The types DaysOfWeek and TimeStamp are predefined.  The array types twodims and
matrix are alternative ways of defining similar two-dimensional arrays; the matrix type
could also have been defined as ARRAY[2..5] OF ARRAY[subr] OF real.

The types twodims and matrix illustrate a general point: while they are similar, they
are not "the same".  Pascal allows you to do various things with structures of the same
type: you can assign one to another, or pass one to a formal parameter of the same type.
Because twodims and matrix are in fact array types with the same shape, you could
assign a variable of one type to a variable of the other element-by-element, but you
cannot perform whole-array operations between them.  See VAR parameters.

When you have an array of small elements, and the size of the array is more significant
than the small amount of extra code that may be needed to access the individual elements,
you can define the array to be PACKED.  For example:
  TYPE  buffer = PACKED ARRAY [0..9999] OF byte;   
In this implementation, such an array will occupy 10000 bytes, while the non-packed
form would occupy 40000 bytes.  Packing in fact mainly affects element types which are
subranges of integer, such as byte and word; char or Boolean, or enumerated types, do
not benefit, nor do the larger types such as integer or real.



You can describe a complete array value (for instance a constant or an initial value) by
means of an array constructor.

Array constructors
An array constructor defines the value of a whole array; when all the ingredients are
constant, the value can be named as a constant or used as an initial value.  Suppose that
you have a type defined as ARRAY [-10..+10] OF integer, then a constructor
specifies indexes and the values that the corresponding elements should have, for
example:
    [ -6,-4,+4: 10; -5,-3,+3: 11; -2..+2: 12;
      OTHERWISE 5 ]   
Besides specifying that particular elements should have the values 10, 11 and 12, this
gives the default value 5 to all other elements.  An array constructor must give a value to
every element, and the OTHERWISE clause allows you to ensure this even when the
range of index values is not defined until run time (see Schema types).  Indeed, a useful
array constructor is [OTHERWISE 0].

When a constructor is used within a type definition as the initial value, its type is implicit,
but in other situations it must be specified.  For example, if the above type had been
defined with the name iarray, you could introduce a constant:
  CONST iarcons = iarray [-10..-5: 10; 5..10: -10;

   OTHERWISE 0 ];   
You could then supply the constant as a value parameter when the formal has type iarray
(see Value parameters), and there is another interesting usage.  You can refer to an
element of an array constant using a variable index, for instance iarcons[i], or in
order to select one string from an array of strings.



Record types

A record is a structure made up of named fields, which can include strings, arrays or
other records as well as simple types such as integers and characters.  You access
individual fields by name, typically thus: recordvar.fieldname.  The definition of
a record type is introduced by the word symbol RECORD and terminated by the word
symbol END.  For example:
  TYPE  vehicle = RECORD

    wheels: 2..12;
    weight: shortreal;
    colour: rainbow;
  END;

  VAR   trucks: ARRAY [1..20] OF vehicle;   
You can refer to the weight of the seventh vehicle in the array as trucks[7].weight.

A record can be defined to have a fixed part, similar to the above, followed by a variant
part.  The idea is that you can define a number of alternative layouts (variants) which are
all nevertheless the same type.  See Variant records.

You can define a record type to be packed by placing the word symbol PACKED before
RECORD.  Usually, the reason for doing this is to indicate to the compiler that you attach
more importance to reducing the size of records than to any extra code that may be
needed to address them.  Another possible reason is to have records whose internal layout
is the same as that produced by another implementation; in particular, they will match the
layout from 16-bit Extended Pascal.



Variant records

A variant record consists of a fixed part (which may have no fields in it) and a variant
part.  The following example defines a record type with three variants:
  TYPE  shapes = (triangle, square, circle);

vntrec = RECORD
   OffsetX, OffsetY: real;
   CASE shape: shapes OF
     triangle: (side1, side2,

side3: real);
     square:   (side: real);
     circle:   (radius: real);
 END;   

As will be seen, the fixed part consists of the two fields OffsetX and OffsetY, the variant
part is introduced by CASE...OF, and the list of fields for each variant is enclosed in
parentheses.  The tagtype, in this case shapes, specifies the basis on which the variants
are defined, and the possible values are listed.  The tag, in this example shape,
determines the currently selected variant, the "active" variant.  Including the tag value in
the definition is optional, but is generally recommended.

All the possible values of the tagtype must be accounted for in the list of variants, but not
necessarily separately.  You can have multiple tag values against one list of fields, thus:
tag1,tag2,tag3: (...); or tag5..tag9: (...);.  Also, you can use
OTHERWISE at the end to account for any remaining values: OTHERWISE (...);.
(For comparison, see CASE statement.)

The Pascal standard does not demand that variants should be allocated overlapping
storage, but almost all implementations do so in almost all cases.  If you use the
procedure new  to allocate space in the heap for a variant record, you can optionally
supply a tag value, and would get just the space needed for the corresponding variant.  In
our example above, the record describing a square or a circle requires less space than one
describing a triangle.  (See LRM 9.4.2 for more detailed rules concerning such usage.)

This implementation includes an optional check on variant usage, explained in the User
Manual.  See also schematic records.





Set types

A set type describes a set of values of a base type; they could be for example those
members of the char type which are vowels, or the days from DaysOfWeek on which an
extra discount is given.  The base type must be an ordinal type.

A set type is defined thus:
  TYPE  stype = SET OF basetype;   
for example
  TYPE  charset = SET OF char;   
A variable of type charset can be used to define characters having a common property, 
such as being printable.

Set values of compatible base types can be combined, using the conventional operators,
which in this situation take on special meanings.  The + operator gives the union of the
two operands, – gives the difference, and * the intersection; comparisons can also be
performed, again with special meanings.  For more details see Set operations.

A set value can be specified by means of a set constructor, which shows the members to
be included, contained between square brackets, for instance
['a','e','i','o','u'].   When the members are all constants, as here, the set
value is a constant, and can specify an initial state.  A constructor within an executable
statement can also specify a set which includes members defined by variables.



File types

The predefined file type text is one of the common means by which a program can
communicate with its environment.  Textfiles are composed of characters arranged into
lines.  You can define files with other component types, such as records, arrays, or indeed
simpler types such as integers.  The only requirement is that it must be an "assignable
type" (see under Assignment-compatible types).  Non-text files are often referred to
collectively as binary files.

It is necessary to be clear here about terminology.  A Pascal variable having a file type is
commonly referred to as a "file", but so also is an external file to which the variable may
be connected.  The term "file variable" will be used when there may be doubt as to which
is intended.

File variables can be defined to access an external file either sequentially or randomly.
The form of definition for sequential access is
  TYPE  fseq = FILE OF ComponentType;   
and for random (or direct) access is
  TYPE  fdir = FILE [IndexType] OF ComponentType;   
The same external file can be connected at one time to a variable of a sequential type and
at another time to a variable of a direct-access type.  Using the sequential file variable,
the components of the external file must be processed sequentially; with the direct-access
file variable they can be processed randomly or sequentially.  The index type in the
definition of a direct-access file type must be able to cover the number of components in
the external file, and can exceed that number; for instance [1..maxint] can be used.

File variables are connected to external files, and components read and written, by means
of predeclared procedures and functions.  For making connection see
    OpenRead, OpenWrite, bind, reset and rewrite.  To read, write or modify components,
see
    read, write and update.  For accessing components of direct-access files, see
    SeekRead, SeekWrite and SeekUpdate.
Other file-handling routines are listed in the File handling section.



Pointer types

An executing Pascal program includes an area of memory called the heap which is
available for dynamic allocation and disposal.  Variables can be created in the heap, and
are then accessed by pointers.  When such a variable is no longer needed, it can be
"disposed" and the space it occupied recovered.

The pointers are themselves variables, and it is important to keep in mind the difference
between the pointer and the variable to which it points (the identified variable, in the
standard definition).  A pointer is a variable having a pointer type, and each pointer type
is associated with a particular domain type, that is to say, the type of the variable in the
heap to which it points.

On exit from a procedure or function, any local variables disappear.  By contrast, any
variables which it may have created in the heap continue to exist.  Provided that the
pointers to these variables have been passed out of the procedure, via parameters or by
copying to longer-lived environments, the identified variables can still be used.

A pointer type is defined by association with a domain type, thus:
  TYPE  pdomain = ^domain;   
It is helpful to give the pointer type a name that shows the connection with the domain
type, and prefixing a P to the name of the domain type is a conventional way to do this.
In this definition, "domain" is an illustrative name; you use the name of the type that you
wish the pointer to address.  A pointer to the type vehicle shown in Record types, for
example, might be defined by
  TYPE  pvehicle = ^vehicle;   

If a pointer variable of type pvehicle, pv say, is declared, you create a vehicle record in
the heap by calling the procedure new with pv as parameter.  The operation leaves pv
addressing the new record, and you access the record with the notation pv^, addressing
individual fields by pv^.weight for instance.

The definition of pointer types has one special property, which is an exception to the
general rule that names must be defined before they can be used.  In order to be able to
construct linked lists of records in the heap (which is a very handy technique for certain
purposes) it is necessary to include a pointer as a field in the record which links to the
next in the list.  Such a pointer must have a type whose domain type is the type of the
record, that is, it requires a mutual reference; under the normal rule, this would be
impossible.  To allow it, when defining a pointer type you can include a domain name
which is a forward reference, for example:
  TYPE  prec = ^rec;

rec  = RECORD
 next: prec;
 (* other fields *)

       END;   



You can then scan through the list by next^, or by copying next to another variable v of
the same pointer type and referring to v^.  The definitions of prec and rec need not be
adjacent as in that example, but must be in the same "type definition part" introduced by
the word TYPE.



Schema types

A schema type is a family of related types, together with one or more parameters or
discriminants.  You can select a member of the family by supplying actual values for the
discriminants, somewhat as you supply actual parameters in a procedure call.  Schema
types allow you to define families of subranges, arrays and records; and because the
selection of an individual member can take place at run time, it can depend upon a run-
time value or values rather than being fixed at compile time.

There is therefore a two-stage process: first, you define the "model" or "prototype",
together with factors which will decide the selection of specific members; then, you can
pick individual types to suit particular purposes.  The factors might be for example the
index bounds of an array, which will in turn decide the size.

The string type is technically a predefined schema, with one discriminant called capacity.
You can select individual string types by specifying a value for the capacity.  The
shortstring and widestring types are similar.

A type selected from a schema family is known as a schematic type, and is one form of
type denoter.  Two schematic types are considered "the same" (and are therefore
compatible) if they were produced from the same schema with the same set of
discriminant values.  The schema itself is not a valid type denoter, but can be used in two
situations: as the type of a formal parameter, and as the domain type of a pointer.  The
schema in effect adapts to events at run time, for example any string-type value can be
passed to a formal parameter of type string.

The following sections include examples of schema definitions and usage:

    Schematic subranges

    Schematic arrays

    Schematic records

For a more detailed general description of schema types see section 6.2 in the Language
Reference Manual.



Schematic subranges

You can define a schema which is a family of subrange types like this:
  TYPE  subschema(lower,upper: integer) = lower..upper;
The types produced from this schema are subranges of integer; alternatively you might
have a schema which is a family of subranges of char:
  TYPE  charsubs(first,last: char) = first..last;
In these  definitions, lower, upper, first and last are the discriminants, and you produce
individual types from the schema by substituting values for these discriminants, for
example:
  TYPE  TenToTwenty = subschema(10,20);   
As is quite often the case, the discriminants appear as the bounds of the subrange, and for
this reason must obey the rules (be of compatible types, and the value substituted for
lower must not exceed that for upper) when a type is produced.

Discriminants will normally appear in the definition of the schema, but not necessarily in
the simple form shown above.  It might be convenient to have a schema like this:
  TYPE  basecount(base: integer; count: word) =

  base .. base+count-1;   
A subrange is defined by two expressions, and you can take advantage of this, as here;
however, the expressions can only refer to discriminants and constants.  You can produce
a type from the schema wherever a type denoter is valid, such as:
  VAR   sv: basecount(0,100);   
The variable sv has a subrange type with bounds 0 to 99 (0+100-1).

Schematic subranges can be incorporated into other schemas.  You might use one as the
index type for a family of arrays, allowing the subrange schema to be used independently
elsewhere in your program.



Schematic arrays

One of the useful applications of schema types is to describe arrays which can adapt to
different circumstances at run-time.  The schema vec defined by:
  TYPE  vec(limit: integer) = ARRAY[1..limit] OF integer;
can be used as the type of a parameter like this:
  FUNCTION  sum (VAR fvec: vec) = ans: real;
    VAR   n: integer;
    BEGIN
      ans := 0;
      FOR n := 1 TO fvec.limit DO

  ans := ans + fvec[n];
    END (*sum*);   
Within the function, the code can refer to the upper bound of the index as fvec.limit.
If elsewhere in the program there are variables declared as:
  VAR   factors: vec(10);

results: vec(32);   
they can be passed to the function, say like this:

writeln(sum(factors),sum(results));   
and the function will adjust automatically to the different sizes.

Another possible application of the schema vec is to declare a local variable whose size
is defined by a parameter.  In the procedure which starts:
  PROCEDURE proc (size: integer);
    VAR   lvec: vec(size);   
the variable lvec has a type produced from the schema with the discriminant value
size.  Within procedure proc, the array lvec can be passed to the function sum, and
the reference within sum to fvec.limit will return the value of size.

The principles described above in terms of a vector can easily be extended to arrays of
two or dimensions.  The following example is probably rather artificial, but will illustrate
some more possibilities.
  TYPE  sub(first,last: char) = first..last;

twodim(low1,upp1,upp2: integer; f,l: char) =
   ARRAY[low1..upp1,1..upp2] OF sub(f,l);

The family of types defined by twodim are arrays with index bounds derived from the
discriminants low1, upp1 and upp2.  The component type is a subrange of char
produced from the schema sub by substituting the discriminants f and l of twodim for
the discriminants first and last of sub.

It is worth noticing at this point some differences between schema parameters as
described above and conformant array parameters.  A function equivalent to sum could
be declared with a conformant array parameter, and would adapt to actual parameters of
different sizes; also, the actual parameters need not all be produced from the same
schema, but can be any arrays that "conform" to the pattern of a one-dimensional array of



reals.  However, they must already exist; the conformant array method does not provide
any means of creating new arrays, such as lvec in the procedure proc.

Schematic records

The description of record types introduced the form of  variant record in which the active
variant is selected by a tag value.  The application of schemas to records is based on
using a discriminant as the variant selector.  Here is an example:
  TYPE  recschema(select: Boolean) =

    RECORD
      f1, f2: anytype;
      CASE select OF

false: ( ..fields.. );
true:  ( ..fields.. );

    END;   
The selector can be any ordinal type, which for practical purposes should have a limited
range of values.  You produce specific record types from such a schema by supplying an
actual discriminant value (in the example, either false or true).

As with other schema types, you can pass records as parameters when the formal
parameter has the schema type, and within the procedure or function discover the type of
each actual.  You can also create a local variable whose type is produced when the
procedure or function is entered (see schematic arrays for an example).  Another
possibility available for all schema types, but probably most useful with records, is to
define a pointer having the schema type.  Following the example above, you could write
something like this:
  TYPE  precschema = ^recschema;
  VAR   recptr: precschema;   
Then in subsequent code you can create a record in the heap having a type produced from
the schema, by quoting an actual discriminant in a call of new:

new (recptr, false);   
To remove the record from the heap when you have finished using it, you just call
dispose(recptr).  To build a linked list of records (of either variant) you would
introduce a field (called link, say) of type precschema.

An essential difference between a schematic record and a conventional variant record is
that the type (and hence the variant) of the schematic record is decided when the variable
is created, whereas (unless it was created in the heap with specific tag values) the variant
in the conventional record can be changed during the life of the record.  Because many
hard-to-find bugs arise from mistakes in variant usage, the schematic form is more
secure, but for some purposes the flexibility of the conventional form may be important.



Ordinal and simple types

The term ordinal types describes a collection of types which have a common property:
they are either numeric integers, or they can be mapped onto integers (their "ordinal
values"), and are indeed represented internally by these ordinal values.  Some predefined
types are ordinal types, in particular:
  integer, and integer subranges such as word,
  char (character type).
Other ordinal types are defined within the program:
  enumerated types,
     specified subranges of ordinal types.

In a number of situations, an ordinal type is required, for example as the type of an array
index, or the selector in a CASE .. OF.

The so-called simple types comprise ordinal types and the real (floating-point) and
complex types.



Type denoters

The title of this topic may sound rather technical, but it is a convenient way of
introducing the usage of types, as distinct from their definitions.  You give each variable
a type when you declare it; similarly, you specify the types of array elements and record
fields.  These references to types are collectively type denoters.

A type denoter may be, and often is, just the name of a type, such as integer, or a name
that you have defined as a new type.  Alternatively, it may be the definition of a new type
as described in programmer defined types, such as an enumeration or a record.   Again, it
can be a type produced from a schema, in particular a string of a specified capacity
produced from the predefined string schema, for instance string(50).

The following semi-formal definitions show some of the various uses of type denoters.
    TYPE  NewType = <TypeDenoter>;

  VecType = ARRAY [1..n] OF <TypeDenoter>;
  RecType = RECORD

      field1: <TypeDenoter>;
      field2: <TypeDenoter>;
    END;

    VAR   var1,var2: <TypeDenoter>;
An identifier can be applied at any point after its definition is complete; because
NewType is defined as the name of a type, it would be a valid form of TypeDenoter in
any of the later occurrences, such as the types of fields or variables.

A type denoter can also associate the bindable attribute with a type, and provide an
initial value.  A file variable must have a bindable type if it is to be connected to a named
external file, so you might write
    VAR   logfile: BINDABLE text;   
for example, where BINDABLE text is a form of type denoter.  And in the following,
extracted from the description of initial values:
   TYPE  ThreeCols = (red, green, blue) VALUE red;
  VAR   hue: ThreeCols VALUE blue;
both (red, green, blue) VALUE red and ThreeCol VALUE blue are type
denoters.



Variable declarations

You introduce variables into a program in a variable declaration part, giving them each a
name and a type.  Here is an example:
  VAR   j,k: integer;

title: string(10) VALUE '';
ch: char;   

The variables j and k are of type integer, title is a string of capacity 10 which is initialised
to empty, and ch is a character.  The declaration part is introduced by the word-symbol
VAR and can contain one or more declarations each terminated by semicolon.  A
declaration can name one or more variables of the same type.

A variable declaration part is one of the possible "definitions and declarations" that come
at the start of a block.  A main program consists of a program-heading and a block;
variables declared in this block exist throughout the execution of the program, and are
sometimes known as "static" or "outer-level" variables.  A procedure or function consists
of a procedure-heading or function-heading and a block; variables declared in these
blocks exist only while the routine is active, and are known as "local" variables.  In Scope
there is a description of which variables can be accessed from different parts of a
program.

The type which is associated with a variable in its declaration governs the values it can
hold and the operations in which it can take part.  At the most obvious level, an integer
value such as the result of an arithmetic operation with integer inputs can be assigned to
(ie. placed in) an integer variable.  Up-level arithmetic assignments such as integer value
to real variable are also allowed, with conversion supplied automatically.  The reverse is
a little more difficult, because a real (floating-point) value will often have a fractional
part, and also may overflow the limits of the range of integers.  There are two functions
called trunc and round which take care of these potential difficulties.

In a similar way, integer and string values cannot be directly combined, but the built-in
procedure writestr will convert a numeric value to its external representation and place it
in a string variable.  (Indeed, writestr will build up a string containing multiple values of
different types.) Similarly, readstr performs the reverse process.



Accessing variables

To access a variable introduced by a variable declaration, you simply quote its name.
The name accesses the whole (entire) variable, which in the case of any simple variable
such as an integer or a character is all you need.  You can also access whole arrays,
strings or records by name, and particularly with strings this will again often be what is
required.  The notations for accessing elements of arrays by indexing or selecting fields
of records are described in Array types and Record types.  If you have a variable which is
an array of integers, vints say, you can access an element by quoting an index such as
vints[i].  Such a reference has the type of the element, in this case integer.  Similarly, a
record field is selected by name using the "." notation, and the reference has the type of
the field.  Individual characters from a string can also be accessed by indexing.

To go from a pointer variable to the variable at which it points you use the "^" notation
described in Pointer types.  When the variable in the heap is a record, you can then select
a field by combining the pointer dereference with a field selection, for instance
pv^.weight.

Just as the definitions of structured types can include other structures, the notations for
accessing them may involve a field access followed by an index, or an index followed by
a field access.  The concept of a variable access is to progress from a base reference to
the particular item of interest by a combination of the indexing ([..]), field selection (.)
and pointer dereference (^) operations.  At each stage the item you have accessed has a
type that you can treat as a whole, or (if it is a structured or pointer type) determines what
method of further access is appropriate.



Specifying actions

The actions of a program are specified by statements.

    Statements

Assignment statement

Procedure statement

Compound statement

GOTO statement

Empty statement

Constructor statement

Destructor statement

IF statement

CASE statement

WHILE statement

REPEAT statement

FOR statement

TRY statement



Statements

The actions (the "algorithm") of a program are defined by statements.  In the description
of a Main program, the statement part was introduced by the symbol BEGIN and
terminated by END, and the same structure is used in the body of a procedure or function.
The statement part is a sequence of individual statements which are normally obeyed in
the order in which they are written, but the order can be modified by means of
conditional statements and repetitive statements which are discussed below.  Adjacent
statements must be separated by a semicolon symbol.

Many statements involve expressions.  The simplest expressions consist of  a constant or
a simple reference to a variable; by combining these simple elements with operators such
as + or <= you can obtain any desired value.  For details see expressions.

The first category of statement consists of "simple" and "compound" statements.  These
are the statements that are obeyed one after the other in the order in which they are
written.
    Assignment statement
    Procedure statement
    Compound statement
    GOTO statement
    Empty statement

The next category are the "conditional" statements that allow you to choose between
alternative courses of action.
    IF statement
    CASE statement

The "repetitive" statements allow you to specify that a subsection of the algorithm is to
be repeated until an end condition is reached.
    REPEAT statement
    WHILE statement
    FOR statement
(A mistake made by programmers at all levels is to specify an end condition which for
some reason is never reached; the program then reports an exception, or alternatively
appears to go to sleep and has to be terminated by the user.)

The WITH statement opens up access to the fields of a record, or a schematic variable,
and finally there are statements concerned with object-oriented programming and
exception handling.
    Constructor statement
    Destructor statement
    TRY statement



Assignment statement

An assignment statement causes a value to be obtained and "assigned" to a variable, array
element, or field of a record or object.  The destination of the assignment, or left-hand
side, is written first, followed by the symbol := and an expression that produces the
desired value.  For example, if x is an array and r is a record, you might write the
following series of assignment statements:

j := count * size;
x[j] := sin(t);
r.name := 'April';

Those examples assigned to an element of the array x and a field of the record r.  In
Pascal, you can also assign whole arrays and records (an expression can consist of an
array or record), as well as string values involving concatenation and the results of string
functions.  Some type conversions are supplied automatically: in numeric assignments,
from integer to real, and from integer or real to complex; and in character assignments,
from an 8-bit character or string to Unicode.  In these cases, the destination can always
hold the expression value.  There is a requirement that the types of the expression and the
destination be what is known as assignment compatible, which can generally be checked
at compile time.  The same rule applies to similar situations, notably parameter passing,
and is examined in Type compatibility.

Even when the types of the expression and the destination agree, assignment errors can
still occur when the program is executed.  A numeric expression may sometimes
overflow, or one of its ingredients may not be properly defined; the value of a string
expression may be too long for the destination.  In this implementation, a floating-point
overflow (which is a very unusual event) is always notified, but integer and string
overflows are just truncated unless you request the compiler to include checking.



Procedure statement

A procedure statement activates a procedure, which may be one of the predefined
procedures such as writeln or bind, a procedure imported from a library, or a procedure
that you have defined yourself.  If the procedure being called  has a parameter list, the
statement must supply matching actual parameters.

Examples:   writeln ('Hello world!');  delete (sv, 1, 1);  GetTimeStamp (ts);

Compound statement

A compound statement is a sequence of statements introduced by the symbol BEGIN and
terminated by END.

Example:
IF ... THEN
  BEGIN
    inx := 1;  writeln ('Next item');
  END;

Here, the assignment to inx and the writeln are both to be performed if the condition is
met.  Individual statements in the list are separated by semicolons.  The layout is (as
always) optional, and in many cases statements would be placed on separate lines.
Indenting between the BEGIN and END gives a clear visual indication of the length of the
sequence.

A compound statement forms the statement part which specifies the actions of a program,
procedure or function.



GOTO statement

A GOTO statement unconditionally transfers control to a labelled point in the current
procedure (a "local" GOTO), or in a textually enclosing procedure or main program
("non-local").  You can use GOTO when you need to leave a repetitive operation before
the terminating condition is reached.  You must not use a GOTO when the position of the
label would involve jumping into a loop or other structure.

Examples: GOTO 99; GOTO next_item;

The position of the label is defined by writing it, followed by a colon, before the
statement which is to be the destination of the GOTO.  The identity of the label must
appear in a declaration part in the block in which its position is defined.

Empty statement

An empty statement consists of nothing at all; it is nevertheless sometimes convenient,
for instance you can label it as the destination of a GOTO when there is no action to be
performed.

Constructor statement

In object-oriented programming, a constructor statement is used within the
implementation of a constructor to activate a constructor defined in a parent class.  See
also LRM section 13.

Destructor statement

In object-oriented programming, a destructor statement is used within the implementation
of a destructor to activate a destructor defined in a parent class.  



IF statement

There are two forms of IF statement:
IF condition THEN statement
IF condition THEN statement ELSE statement

In both forms the condition is a Boolean expression, and the statements following THEN
and ELSE can be compound (BEGIN ... END) to attach a group of actions to one
condition.

The statements following THEN and ELSE can also be of other kinds, including IF
statements, when some care is needed.  The rule in these circumstances is that an ELSE
attaches to the nearest IF that does not already have an ELSE.  You may sometimes have
to put a subsidiary condition by itself inside a BEGIN ... END to avoid saying something
you did not intend.

Examples:
IF (n < 0) AND (ch = ' ') THEN nextch;
IF (n < 0) THEN
  BEGIN
    IF (ch = ' ') THEN nextch;
  END
ELSE name := name + ch;

In the second example, the ELSE belongs to the IF (n < 0) THEN ... , not to the 
IF (ch = ' ') THEN ... .

If the condition can be evaluated at compile time, a statement that will never be reached
is not compiled.  Typically, you have a named constant called (say) TestVersion, and use
it like this:

IF TestVersion THEN writeln('Value of x is: ', x);



CASE statement

A CASE statement provides a multi-way choice of actions.  The value of an expression is
matched to a list of case-constants with each of which is associated a statement, laid out
like this:

CASE expression OF
  const1:   statementA;
  const2, const3:  statementB;
  const4 .. const5:  statementC;
  OTHERWISE  statements;         optional
END {case}

The case-constants must match the type of the expression, which can be any ordinal type
such as integer, an enumerated type, or char.  They can be constant-expressions of the
matching type, and there can be more than one value associated with a statement.  (The
notation ".." implies a range of values.)

Example:
CASE day OF
  Sunday:   writeln ('Gone fishing');
  Monday, Tuesday:  EarlyStart;
  Wednesday .. Friday:  LateFinish;
  Saturday: Shopping;
END {case};

The optional OTHERWISE clause (called a "completer") allows you to specify actions to
be performed if the expression value does not match any of the case-constants.  Without a
completer, a non-matching expression raises an exception.

A CASE statement, like an IF statement, provides a means of conditional compilation
when the expression can be evaluated at compile time.  The selection is made then, and
only one of the dependent statements is compiled.



WHILE statement

With a WHILE statement you can obey an action zero or more times.  The format is:
     WHILE condition DO statement   
The condition here is a Boolean expression such as (inx <= len) AND (s[inx]
<> ' ') or (p <> NIL).  Control returns each time to test the condition, and so long
as it is true the subsidiary statement is obeyed.  The latter can be any kind of statement,
including a compound statement or even another WHILE.

If the condition is false when the WHILE is first entered, the controlled statement is
never executed.  You can leave the WHILE loop by means of a GOTO, but this is rarely
done, and one of the things the controlled statement must then ensure is that it directly or
indirectly modifies the condition so that it eventually fails and the repetition ends.

A form of condition which is useful when processing linked lists is (p <> NIL)
AND_THEN (p^.field < 10).  The reference to the variable pointed at by p, in this
example a record, is only attempted when p is non-NIL.

See also:
    REPEAT statement
    FOR statement

REPEAT statement

With a REPEAT statement you can obey a series of actions one or more times.  The
format is:
     REPEAT statement-sequence UNTIL condition   
The condition here is a Boolean expression such as (inx > len) or (p = NIL).
Each time the end of the statement-sequence is reached, the condition is tested, and if it is
false control returns to the REPEAT.  The statement-sequence is similar to a compound
statement, consisting of one or more statements separated by semicolons.

In a WHILE statement, the controlled statement is never executed if the condition is false
when the WHILE is first entered, whereas the statement-sequence in a REPEAT loop is
always obeyed at least once.  You can in principle leave the loop by means of a GOTO,
but this is rarely done, and you must otherwise ensure that eventually the condition
becomes true and the repetition ends.

See also:
    WHILE statement
    FOR statement



FOR statement

With a FOR statement you can repeat an action a number of times, under the control of a
loop count which is maintained automatically.  You nominate a variable, which within a
procedure or function must be a local variable, as the control variable for the loop.  The
control variable must have an ordinal type; often it will be an integer or integer subrange
such as word, but it may also be char or an enumerated type.  Within the loop, the control
variable is updated automatically, and you can use it, for instance as an index.

There are two kinds of FOR statement.  The one most often used is the sequential form,
in which the cotrol variable takes an ascending or descending sequence of values.
Another form was introduced in the Extended Pascal standard, in which it takes values
defined by means of a set; this is called set-member iteration.

The FOR statement is one form of repetitive statement.  See also:
    REPEAT statement
    WHILE statement



Sequence iteration

In this form of FOR statement, the control variable takes ascending or descending
sequential values.  The following specifies an ascending sequence:
f1     FOR v := lower TO upper DO statement
and this specifies a descending sequence:
    FOR v := upper DOWNTO lower DO statement 

Here, v is the control variable (see the general description of FOR statements), and upper
and lower are expressions which specify the range of values it is to take.  The controlled
statement forms the body of the loop, and can be of any kind; it will often be a compound
statement (BEGIN ... END), when several actions are to be carried out at each repetition,
but it can alternatively be a single statement, even another FOR statement.

Example:
    FOR n := 1 TO size DO buff[n] := 0;   

In the example, lower is a constant and size is (we assume) a variable, but they can be
more complicated expressions when the situation requires; they must however be
assignment compatible with the control variable.  If the values of lower and upper are
equal, the loop is performed once.  It is not an error for lower to be greater than upper,
but in that case the loop is not entered.

Set-member iteration

In this kind of FOR statement, the control variable takes values defined by a set (see Set
types).  The format is:
    FOR cv IN setvalue DO statement   
for example
    FOR ch IN ['a','e','i','o','u'] DO peek(ch)   
(where peek is a local procedure).

A DO loop of this kind allows you to express conveniently some non-sequential sets of
values.  In this implementation the values are in fact selected in ascending order, but it is
as well not to rely on this, as there is no such requirement in the standard definition.



WITH statement

The WITH statement is part of classic Pascal, and has the format:
WITH record-access DO statement   

It selects a record, and makes the names of its fields immediately accessible during the
contained statement.  Returning to the example in record types:
  TYPE  vehicle = RECORD

    wheels: 2..12;
    weight: shortreal;
    colour: rainbow;
  END;

  VAR   trucks: ARRAY [1..20] OF vehicle;   
the following WITH statement allows fields wheels and colour to be addressed:

WITH trucks[j] DO
  IF (wheels = 2) AND (colour = red) THEN ...

Using WITH to select the variable is more convenient than repeating the trucks[j],
and may well also be more efficient.

In Extended Pascal, a WITH statement can also be used to select a variable of a schematic
type, and make the names of the schema discriminants immediately accessible.

One thing to beware of is the situation in which a variable in scope has the same name as
one of the record fields or discriminants.  The names made accessible by WITH take
precedence, and the variable cannot be addressed while it is in force.



TRY statement

The TRY statement is part of the exception handling feature, which is described in the
section Violations, errors and exceptions.  It allows you to intercept an exception, and if
possible deal with the situation before it is notified to the user of the program.  What
follows is a description of the commonest usage; there are other possibilities, described in
section 14 of the Language Reference Manual.  Note that to use the facility, you must
first import a supplied interface called ExceptionHandling.

The general form of TRY statement is

  TRY  <region>
    <ON-clause>
   [<ON-clause> ...]
  END;

The region of a TRY statement is a statement or statement-sequence, which may
include procedure calls.  After the region is a series of one or more ON-clauses, each of
which has the form

    ON exception-name DO statement;

The exception names, which are grouped into classes, are listed in

    Exception classes.

You can name a specific exception, such as ExcepInputInteger, or a group, such as
ExcepFormat which contains ExcepInputInteger together with a number of
other specific exceptions related to input/output formatting.

If an exception arises during execution of the region code, control is passed to the first
ON-clause, and the kind of exception is compared with the exception name in the clause.
If the name describes the exception, the related statement is executed, otherwise control
passes to the next ON clause if there is one.  If no clause describes the exception, it is
passed up the chain of procedure calls in case an enclosing TRY statement can handle the
situation.  If no matching ON clause is found at any level, the user is notified in the usual
way.



Expressions

Statements are the means of specifying the actions of a program, but they do not of
themselves include any arithmetic or logical capabilities.  These are provided by
expressions, which take part directly in many kinds of statement, and are also required in
other situations such as supplying actual value parameters.

An expression is the means by which you can derive a value (see Values, variables and
constants).  The simplest expressions consist of a constant, or a reference to a variable,
array element or record field; such expressions just produce the value of the item they
contain.  By combining simple elements with operators such as + or <= you can build up
more complicated expressions.  Operators are defined which produce arithmetic, Boolean
(logical), and string-type values, but not arrays or records; that is, you cannot combine
these structured values.  For uniformity of definition, however, an expression can consist
of a single structured-type value.  An assignment statement obtains the value of an
expression and "assigns" it to a destination; the expression may involve arithmetic
computation, the result being assigned to an arithmetic-type destination, or string
operations with the result assigned to a string destination; and provided the two structures
are of matching type this definition of assignment also includes the possibility of copying
a whole array or record as a single value.

The elementary constituents of expressions are primaries; suitable primaries can be
combined using operators.  When an expression involves several different operators, the
order in which the operations are carried out is determined by the relative precedence,
for instance multiplying operators have higher precedence than adding operators.  You
can use parentheses to modify the precedence ordering; a subexpression in parentheses is
treated as another kind of primary or elementary item.  This recursive form of definition
allows you to build up expressions to any degree of complexity.  For more details see
operator precedence.

Most expressions are found within the statement-part of a program or procedure, that is,
the part which specifies the actions.  You can, however, construct expressions whose
constituents are all constant, and such constant expressions can appear in other contexts.
It may be convenient, for instance, to define the dimensions of an array, or an initial
value, using operators, rather than as a single constant.



Primary operands

Expressions allow you to combine operands using operators.  The simplest forms of
operand are primaries, of which there are several kinds:

    Variables (more correctly, variable-accesses)

    Constants

    Function results

    Constructors

    Subexpressions

    Other primaries

Variables

The term variable-access is used to describe the process which starts with the name of a
variable.  If you wish to access the whole (or “entire”) variable, its name is all that is
needed.  On the other hand, if the variable is an array, you may wish to access one
element, or if it is a record to access a field.  In formulating a variable-access, you can
use a combination of indexing ([index]), field selection (.fieldname) and pointer
following (^) to find the sub-item in which you are interested.

As an example, suppose you have created a record in the heap and placed a pointer to it
in a variable called prec.  One field of the record, called avals, is an array of integers.
To access element k of this array, you write:
    prec^.avals[k]   
You are describing the process of taking the pointer prec, following it to the record,
getting to the field avals, and selecting element k of the array.  Notice that this is an
access of type integer; as a reference within an expression it produces an integer value,
and it can also appear as a destination for storing an integer result.

If you were to leave out the index from the previous example, it would become a
reference to the whole array, which is appropriate when assigning or copying as a
structure.  Similarly, the access prec^ refers to the whole record.

An index value is another place where an expression can appear.  Instead of [k] above,
it would be possible to write say [4*k-10], so long as this was indeed a valid index
value.  The type of an index expression must be compatible with the index in the
definition of the array type.



Constants

The constants used within expressions may appear explicitly, for example 5, 16#FFFF,
2.75 or 'OK' (see Numbers and Character strings).  Alternatively, they can have been
defined as named constants in a previous CONST definition, and appear in expressions
by name.  It is a good idea to employ named constants in any situation in which the same
value or related values are needed in different places; named constants can be defined by
constant expressions, so any related values can be written in forms that express the
connections between them.

Constants can only be used in situations where their type is appropriate; you cannot for
instance multiply or compare a day of the week and an integer constant.  The value NIL
is the only constant of pointer type, and is compatible with all defined pointer types.

Constant values of set or structured types can be written using the set-constructor, array-
constructor and record-constructor notations with constant constituents.  The notations
are described in Set types, Array constructors and Record constructors.  Again, it is often
a good idea to define constructors as named constants.

Functions

When you call a Pascal function, it returns a value which can  be used as a primary in an
expression.  In standard Pascal, functions can return numeric or pointer values; in
Extended Pascal they can also return strings, arrays and records.  When the result is
numeric, it can take part in operations, just as a variable or constant can do.  For example,
the predefined function rand returns a random real value in the range 0.0 to 1.0, and the
function trunc takes a real value and returns the integer part.  The expression
trunc(rand*1000)) returns a random integer value in the range 0 to 999.

The results returned by string-type functions can take part in string-type expressions, for
instance with the predefined function substr you could combine parts of two strings s1
and s2 like this:

substr(s1,1,5) + substr(s2,6)   

In Extended Pascal you can use the result of a function of pointer, array or record type as
the starting point for a variable access, instead of starting with a variable name, but it is
usually more efficient to call the function separately and store the result.



Constructors

You can use a constructor within an expression to introduce a value of a composite type,
and in this context it can include constituents whose values are determined at run-time.
One kind is the set constructor, introduced in the description of set types.  Pascal set types
allow you to work with groups of values of an ordinal type such as integer, char or an
enumerated type, which are not consecutive.  For example, in classic Pascal you can use a
set as a parameter to procedure which reads and processes text, to tell it which characters
may terminate the next operation.  In Extended Pascal you can use a FOR statement
which iterates through a set of values defined by a set, so you could for instance write a
statement such as:
    FOR day IN [Monday,Wednesday,Friday] DO

NoFreeLunch (day);   
where day is a local variable of type DayOfWeek.

Array constructors and record constructors were introduced in the description of array
and record types.  There the examples showed constructors made up of constant values,
but within expressions the individual elements can have run-time values (which are
themselves, in fact, expressions).  If you are for example passing a record as a value
parameter, you can write it as a constructor instead of introducing a local variable.  If the
type rect has fields top, bottom, left and right, the following statement calls
procedure draw with a parameter of type rect:
    draw (rect[top:m; bottom:m+height;

       left:n; right:n+width]);   

Array and record constructors are not available in classic Pascal, but are part of the
Extended Pascal standard.



Subexpressions

When you are building up an expression, typically an arithmetic expression, combining
values by means of operators, the order in which the operations are carried out is decided
by the relative precedence of the operators. When you need to override the normal
precedence, you can do so by putting part of the expression (a subexpression) in
parentheses.  Because DIV, for example, has higher precedence than + or -, you write
(j+k)DIV(n-5) to cause j+k and n-5 to be evaluated before the DIV; without the
parentheses, the division would be performed first.  Pascal formalises this important
provision by classifying a subexpression as a form of primary, like variable and constant.

Subexpressions are needed quite regularly in forming compound conditions.  For one
thing, as explained in the description of precedence, the relational operators have low
position, and a condition such as i<10 or day=Friday must be parenthesised if it is to
be combined.  But also, in the precedence order, AND is higher than OR, so that given
the expressions:
      condition1 AND condition2 OR condition3
      condition1 AND (condition2 OR condition3)   
the parentheses in the second case override the natural ordering in the first, which places
AND before OR.  When the individual conditions also require parentheses, a visual
layout that shows the intention can be specially helpful.

It is incidentally quite permissible to use parentheses where they are not strictly needed,
simply to illustrate your intention.  You could for instance write:
    IF  ((s[1] = '*') AND (s[k] = lch1)) OR

 (s[k-1] = lch2)  THEN ...   
to show that both the first two conditions must be true to make the combination true.



Other primaries

There are three further forms of primary that are needed only in particular situations.  In
the description of string types, the use of a VAR formal parameter of type string included
a reference to the capacity of the actual parameter as "parametername.capacity".  This
reference is an example of a special form of primary technically known as schema-
discriminant.  If you have defined any schema type of your own, you can obtain the
values of discriminants in the same way, quoting the name of the formal discriminant.

Another form of primary occurs in the conformant array parameter option that is
available in both unextended and extended Pascal.  The bound identifiers which appear in
the parameter list associated with the conformant array can be referred to within the
procedure or function as another form of primary.  They allow the code within the
procedure or function to adapt to the bounds of the index type of the actual parameter.

The last situation occurs in the definition of a schema type.  When the new type includes
for instance an array index which involves the value of a formal discriminant, the
reference is made by quoting the name of the discriminant.  In the following definition:
  TYPE  vec(last: integer) = ARRAY [1..last] OF real;   
the reference to last in the array index is called a discriminant-identifier, which is a
form of primary that can only be used in that particular context.



Operators

You use operators to modify or combine values within an expression.  The majority are
binary operators (so called because they take two operands, not because these are binary
values).  Familiar examples are arithmetic operators such as * (multiply), logical
operators such as OR, and relational operators such as < (less than).  The unary operators
by contrast take a single value; there are for practical purposes two of these, – (negate)
and NOT.  The relative priorities of different operators are discussed in

    Operator precedence

See the following sections for further details:

    Arithmetic operations

    Boolean (logical) operations

    Relational (comparison) operations

    String operations

    Set operations



Arithmetic operations

Arithmetic operators allow you to compute integer, real and complex values.  Integer
arithmetic operations take integer-type values and produce an integer result; integer
subrange values (such as byte or word, or subranges you have defined yourself) are
automatically widened before the operation takes place.  Real (floating-point) arithmetic
operations take real values, or one real and one integer value, and produce a real-type
result; if there is an integer operand, it is converted before the operation.  Complex
arithmetic operations take complex values, or one complex value and one real or integer
value, and produce a complex result.

In many cases, the same symbol is used to specify an operation whichever arithmetic
types are involved, and the mode of the actual operation is derived from the operands.
You can therefore look at the statements in the previous paragraph another way, and say
that there is a progression from integer to real and then to complex.  If the operands have
different types, the junior is promoted to the type of the senior, and the operation is
carried out in the senior mode.  Given an integer variable ivar and a real variable
rvar, the statements

ivar := 22;
rvar := ivar + 5.25;   

store 22 in ivar, then convert the integer value to floating-point, add 5.25, and store
27.25 in rvar.  Some operators, however, have special rules (for instance, they apply in
integer mode only), and these are shown in the next paragraph.

The symbols that you can use to specify arithmetic operations are:
    + add (integer, real or complex)
    - subtract or negate (integer, real or complex)
    * multiply (integer, real or complex)
    / real divide (see note 1)
    DIV integer divide (see note 1)
    MOD modulus (integer only)
    **  exponentiation (see note 2)
    POW exponentiation (see note 2)
    REM remainder (integer only)
    SHL shift left (integer only, note 3)
    SHR shift right (integer only, note 3)
    AND bitwise AND (integer only)
    OR  bitwise inclusive OR (integer only)
    XOR bitwise exclusive OR (integer only)

Notes. (1) The symbol / specifies a real-mode operation; if both operands are integer,
both are converted before the division.  The symbol DIV specifies integer division with
truncation; both operands must be integer.  (2) The symbol ** specifies real or complex
mode exponentiation; the power may be integer or real.  The symbol POW specifies



integer, real or complex exponentiation to an integer power.  (3) The shift operations take
the left-hand operand and shift by the number of places (maximum 31) specified by the
right-hand operand.

Integer values produced during computation must as a rule lie between minus maxint and
plus maxint (maxint = 2147483647).  If this range is exceeded, the result is not
predictable; however, you can request the compiler to insert checks and signal if such
overflows occur.  There is an exception to the rule in this implementation: when an
integer multiply is immediately followed by an integer divide, an extended product is
generated, and only the result of the divide must be within range.

Floating-point arithmetic is performed at extended precision in Intel processors, and
intermediate results will almost never overflow.  It is possible for overflow to occur when
a result is stored in a real (or more particularly a shortreal) variable, and an exception is
raised if this occurs.  Note that the built-in function pi produces an extremely precise
value of the constant.

A number of the symbols used to specify arithmetic operations are also used with
different meanings in conjunction with other types of operand (see String operations, Set
operations and Boolean operations).  The relative precedence of operators is described in
Operator precedence.

The operators +, -, *, /, DIV and MOD are defined in standard Pascal; ** and POW are
defined in the Extended Pascal standard.  The others are local additions.



Boolean operations

Boolean (logical) operators allow you to combine Boolean values to express compound
conditions or logical results.  In this usage, the operand or operands are Boolean type, and
the result is also Boolean.

The symbol NOT is a unary operator; AND and OR are binary operators.  They are all
defined in standard Pascal, and have the "obvious" meanings (see below).  Alternative
forms AND_THEN and OR_ELSE were introduced in Extended Pascal, which require that
the remainder of the expression is not to be evaluated when the final value is already
clear.  You can write something like this:
    WHILE (p <> NIL) AND_THEN (p^.item < 100) DO ...   
to ensure that if the pointer p is NIL, no attempt is made to use its value.  (This
implementation in fact treats plain AND and OR in the same way, but other
implementations may not.)

The relative priorities of operators are described in Operator precedence, where it will be
seen that NOT has a high priority.  It follows that the two expressions:
      NOT bool1 OR bool2
      NOT (bool1 OR bool2)   
are both perfectly legal but mean different things.  In the first, the NOT is done first, in the
other, the OR is evaluated first.  Similar considerations arise from AND having higher
precedence than OR; use parentheses to override the precedence ordering if necessary.
(Good programmers have been known to confuse themselves in this area.)

The result of the operation b1 AND b2 is true only if b1 and b2 are both true, and the
result of b1 OR b2 is true if either operand is true.  A local operator XOR is provided
that yields true if one or other, but not both, of its operands is true.



Relational operations

Relational operators are used to compare pairs of values, and (less often) to check
whether a value is present in a set, or an object is of a certain type.  The operands in a
comparison can be of various types, but they must be compatible, for instance both
numeric, or both character type.  With some operand types, only a subset of relational
operations make sense and are permitted.

When comparing numeric values, relational operators follow the same rule as arithmetic
operations in converting integer to real and real to complex before the operation; complex
values can only be compared equal or unequal.  Character or string values are compared
on the basis of the unsigned ordinal values of the characters.  Comparisons of strings of
unequal length are performed as if the shorter was extended to the length of the longer
with space characters; see eq and related functions for string comparisons taking account
of length.  Unicode strings can only be compared using these functions.

The operators = (equal) and <> (not equal) can be used to compare two numeric values,
characters, strings, or items of enumerated, pointer or set types.  Operators < (less than)
and > (greater than) can be used with integer or real values, characters, strings or
enumerated types.  Operators <= (less-or-equal) and >= (greater-or-equal) can be used
with integer or real values, characters, strings, enumerated types and sets; when
comparing sets, the test s1<=s2 is true if s1 is a subset of s2, and s1>=s2 is true if s2 is a
subset of s1.

The operator IN takes an ordinal value and a set, and returns true if the value is a member
of the set.  The value and the base type of the set must be compatible.  You can
sometimes reduce multiple comparisons by using IN, for example:
      item IN [3..5, 7, 8, 10]
      ch IN ['A','E','I','O','U']   
which are true if item has any of the values shown, or ch is one of the vowels.

The operator IS takes an object reference or exception record name, and a class-name or
exception-name; for details see LRM section 13.8.6 or 14.3.5.

Relational operations have a low relative precedence, and parentheses are needed when
they are combined using AND, OR and NOT (see Boolean operators).  The comparison
operators each have a complement, which usually allows you to avoid using NOT, but the
same does not apply to IN, and you must write:
      NOT (item IN [3..5, 7, 8, 10])   
to reverse the example above.



String operations

In Extended Pascal, the treatment of strings and individual characters employs the
concept of string-type values.  References to string or character variables, and string or
character constants, all yield these string-type values.  Many of the operations you
perform on strings involve use of the string handling procedures and functions, which
often take string-type values as parameters or return string-type results; however the
symbol + is used for the operation of concatenating (joining) string-type values.  You can
obtain a substring from a string variable using the index notation s[i1..i2], or from a
string-type value using the substr function.

Any string expression returns a string-type value, which can be assigned to a string
destination, written to a textfile, or passed as a value parameter.  A string variable is
declared with a particular capacity, for instance string(50) has capacity 50; it can
hold any number of characters from 0 to its capacity, and the current length of the
contents is maintained along with with the characters, and can be obtained by calling the
length function.  Assignment of a value to a string variable defines the length as well as
the characters, so for example the two variables are declared as
    VAR   s1,s2: string(50);   
each has a capacity of 50 characters.  You can assign values to these variables like this:

  s1 := 'abcde';
  s2 := s1 + 'fgh';   

after which length(s1) is 5, length(s2) is 8, and s2[4..7] is 'defg'.

You can also assign to a so-called fixed string, defined as a packed array of char of
specified size, and in this case if the value does not occupy the whole array, any
remaining positions are filled with spaces.  To illustrate this, if you declare a variable as:
    VAR   buffer: PACKED ARRAY [1..100] OF char;   
then the statement buffer:=' '; will fill the whole array with spaces.  A substring
defined with the notation s[i1..i2] can be used as a destination as well as a reference; if a
shorter value is assigned, the remainder of the substring is space-filled, as with a fixed
string.

The shortstring type, and several of the string-handling routines, are local additions,
included to facilitate the transfer of programs from other implementations.  Variables
declared as shortstrings can be used in much the same way as the default strings
described above, though they should be avoided in new programs.  The wchar and
widestring types, on the other hand, are provided particularly for this implementation to
enable you to accommodate and manipulate Unicode.  A number of the string handling
routines accept widestring variables, andyou can assign them and pass them as
parameters, but the + operator is not available.  For further details see the description of
widestring type.



Set operations

Pascal allows you to define set types; you can declare variables of such types, and specify
the operations of union, difference and intersection which are described below.  You can
assign sets, and pass them as parameters, just as with other types.  Most programming
languages do not provide facilities for working with sets explicitly, but you may
nevertheless find the ideas behind them familiar.

To illustrate some of the possibilities, assume the definition
    TYPE  charset = SET OF char;   
and the declarations
    VAR   ucase: charset VALUE ['A'..'Z'];

  lcase: charset VALUE ['a'..'z'];
  alpha,alphanum: charset;   

To combine the members of two sets, you can use the union operation, denoted by +
    alpha := ucase + lcase;
    alphanum := alpha + ['0'..'9'];   
The union operation forms a set value containing the members that are present in either
(or both) of the operands; the difference operation s1-s2 forms a set containing all the
members in s1 that are not also in s2 (that is, it "takes away" s2 from s1).  The
intersection operation s1*s2 produces the members that are present in both s1 and s2.

In this implementation, 'A'..'Z' implies all the upper case letters in the Latin
alphabet.  As an alternative, consider the following method, where ch is a character
variable.
    Alpha := [ ];
    FOR ch := ' ' TO maxchar DO

IF IsAlpha(ch) THEN alpha := alpha+[ch];
This shows how you can use the empty set [ ], and how a constructor can include a
variable component such as [ch].  In fact, a constructor can bring together both constant
and variable elements.  The function IsAlpha is a local extension which returns true if
given an alphabetic character, including non-Latin letters.  It also adapts to the character
code in use, and may even produce a different set depending upon where you run the
program.

See relational operations for a description of the IN operator that allows you to test
whether a member is present in a set.



Operator precedence

The relative precedence of operators within an expression or subexpression determines
the order in which the operations will be carried out.  There are five categories, which in
most situations produce the least surprising outcome.  For example, in the expression
    a * 5 + b * 20   
the two multiplications a*5 and b*20 have higher precedence that the addition, so both
are performed, and the two resulting values then added together.  If you want addition to
precede multiplication, you can use parentheses like this:
    (a + 5) * (b + 20)   
This requires a+5 and b+20 to be calculated and the two resulting values to be
multiplied.  Sometimes, this effect is described by saying that * has greater "binding
strength" than +.

Starting with the highest (most tightly binding), the precedence categories are as follows.
    NOT
    Exponentiating operators (** and POW) and IS
    Multiplying operators (*, /, DIV, MOD, REM, SHL, SHR, AND, AND_THEN)
    Adding operators (+, -, ><, OR, OR_ELSE, XOR)
    Relational operators (=, <>, <, <=, >, >=, IN)
Within each group, a series of operations is generally carried out left-to-right, though this
is not required by the Pascal standards.  For example, in j+k-n the addition of j and k is
done first, and n is subtracted from the result.  The order seldom matters in practice, but
just occasionally, in integer working, an overflow may be avoided by rearranging the
sequence.

In most cases these groupings are similar to those found in other languages such as
Fortran, and lead to the most convenient forms of expression.  One point to be aware of,
however, is that relational operators have lower precedence than AND and OR, and when
writing compound conditions parentheses are regularly needed, for instance:
    IF (a < 5) AND (b > 20) THEN ...   
Without the parentheses, 5 AND b would be the first operation to be attempted.





Built-in Procedures and Functions

    String handling

    File handling

    Mathematical and numeric

    Memory allocation

    Date and time

    Machine level operations

    Character operations

    Miscellaneous

String handling

These procedures and functions allow you to perform operations on conventional strings
and in some cases on Unicode strings also.  A number of them are included to provide
continuity with older Pascal implementations.

    concat    copy    delete    eq    ge    gt    index    insert

    le    length    lt    ltrim    ne    pos    readstr    setlength

    substr    trim    WideToStr    writestr

File handling

These procedures and functions allow you to perform operations on sequential and direct-
access files.  There are operations for associating a Pascal file variable and an external
file, preparing it for input or output operations, and then for reading or writing.

bind    binding    close    connect    echo    empty

eof    eoln    extend    get    HandleOf    LastPosition

OpenRead    OpenWrite    page    position    put

read    readln    reset    rewrite

SeekRead    SeekUpdate    SeekWrite

unbind    update    write    writeln



Mathematical and numeric

These procedures and functions (most are functions) provide mathematical and other
numeric operations.

    abs    arccos    arcsin    arctan    arg    cmplx    cos    cosh

    dec    exp    frac    im    inc    int    ln    max    min

    odd    ord    pi    polar    rand    re    round    seed

    sin    sinh    sqr    sqrt    succ    tan    tanh    trunc

Memory allocation

These procedures and functions are used to request space and return it, and to make
related enquiries.

    dispmem    dispose    HeapUsed

    memavail    new    newmem

Date and time

In this group are the built-in routines relating to date and time.  A number of other
operations are available in the library.

    date    GetTimeStamp    time



Machine level operations

This group contains routines for working at the machine level when the situation
demands it; a number of them are needed for API programming in particular.  In earlier
Pascal implementations, similar facilities were used for crossing type boundaries, but this
implementation provides clearer ways of doing this in new programs.

    addrof    clearbit    FieldOffset    flipbit

    move    setbit    sizeof    taddrof    testbit

Character operations

These are operations on individual characters; the LowerCase and UpperCase functions
are also available for character strings.

    chr    IsAlpha    IsDigit

    LowerCase    UpperCase    wchr

Miscellaneous

This group contains a variety of routines which do not fall into a specific category.

    assert    card    exit    halt    InfoBox    pack    raise    RaiseUser

    return    StackUsed    stkavail    unpack    YesNoBox



abs

Kind:   Built-in function  (all levels)

Group:  Mathematical/Numeric

Format:  abs(x)

Argument x can be a value of any arithmetic type.  Function abs(x) returns the absolute
value of x.  If x is integer or real, result is same type; if x is complex, result is real.  (LRM
9.3.1)

addrof

Kind:   Built-in function (local)

Group:  Machine level

Format:  addrof(access)

Parameter access is a variable-access or string constant; function addrof returns a result
of type ptr representing the address of the access.  The use with string constants is
intended in particular for API calls, and a terminating null is added automatically.  (LRM
9.7.4)
See also taddrof.



arccos

Kind:   Built-in function (local)

Group: Mathematical/Numeric

Format:  arccos (x)

Argument integer or real (-1 <= x <= 1).
Result real (radians, range 0 to pi).

arcsin

Kind:   Built-in function (local)

Group: Mathematical/Numeric

Format:  arcsin (x)

Argument integer or real (-1 <= x <= 1).
Result is real (radians, range -pi/2 to +pi/2).



arctan

Kind:   Built-in function  (all levels)

Group: Mathematical/Numeric

Format:  arctan (x)

Argument x is integer or real expression.
Result is real (radians).

arg

Kind:   Built-in function  (EP standard)

Group: Mathematical/Numeric

Format:  arg (z)

Argument of complex expression z; result real (radians).

assert

Kind:   Built-in procedure (local)

Group:  Miscellaneous

Format:  assert (b [,n] [,s])

Optionally compiled assertion.  Argument b is Boolean expression, optional arguments n
and s are integer and string values.  If compiled and b is false, an exception is raised.
(LRM 9.7.9)



bind

Kind:   Built-in procedure  (EP standard)

Group:  File handling

Format:  bind (f, bt)

Bind f to the external entity defined by bt.  Normally, f is a bindable file; bt is
BindingType.  (LRM 9.2.3.3)

See also:    OpenRead    OpenWrite

binding

Kind:   Built-in function  (EP standard)

Group:  File handling

Format:  binding (f)

Return status of f.  Normally, f is a bindable file; result is always BindingType.  (LRM
9.2.3.2)



card

Kind:   Built-in function  (EP standard)

Group:  Miscellaneous

Format:  card (t)

Returns the cardinality of set expression t (that is, the number of members present in t);
result is integer.

chr

Kind:   Built-in function  (all levels)

Group:  Character operations

Format:  chr(i)
 chr(wch)

Function chr returns the 8-bit character corresponding to integer argument i (i >= 0) or
Unicode character wch.  The result is char type.  (LRM 9.3.7)

See also:    wchr



clearbit

Kind:   Built-in function (local)

Group:  Machine level

Format:  clearbit (loc,n)

Clear bit number n at location loc to 1 and return the previous value as a Boolean result
(0=>false, 1=>true).  See also flipbit, setbit, testbit.  (LRM 9.6.1)

close

Kind:   Built-in procedure (local)

Group:  File handling

Format:  close (f)

Close file f (any file type).  Files are normally closed automatically, close is needed
only in special situations, see LRM 9.2.8.1.



cmplx

Kind:   Built-in function  (EP standard)

Group: Mathematical/Numeric

Format:  cmplx(x,y)

Return the complex value having real and imaginary parts x and y (x, y real or integer).
Result is complex type. Used with constant x and y to define complex constants.

See also:    re    im    polar

concat

Kind:   Built-in function (local)

Group:  String handling

Format:  concat(s1, s2 [,s3 ...])

Return the string obtained by concatenating the string values s1, s2 ...  Result is general
string type.
Included for compatibility with older implementations; equivalent to + operator in EP.



connect

Kind:   Built-in procedure (local)

Group:  File handling

Format:  connect(f, h)

Connect file f to standard handle h.  Parameter f is any file type (normally text), h takes
values 0 (input), 1 (output) or 2 (error).  Retained for compatibility with older
implementations.  Valid in console mode programs only.

copy

Kind:   Built-in function (local)

Group:  String handling

Format:  copy(s,inx,num)
 copy(objref)

The first form is retained for continuity with older Pascal implementations; it returns a
string value obtained by taking num characters from string s, starting at position inx.  In
EP the equivalent is substr(s,inx,num).

The second form makes a copy of an object.  Parameter objref is a reference to an
object.  A new object of the same object type is created and the fields of the original
object are copied to it; a reference to the new object is returned.



cos

Kind:   Built-in function  (all levels)

Group: Mathematical/Numeric

Format:  cos(x)

Returns cosine of x (abs(x) < 2.14E9).  Argument x is any arithmetic type; if x is integer
or real, result is real, if x is complex, result is complex.  (LRM 9.3.2)

cosh

Kind:   Built-in function (local)

Group: Mathematical/Numeric

Format:  cosh(x)

Returns the hyperbolic cosine of x (where abs(x) < 710).  Argument x is integer or real,
result is real.  (LRM 9.3.3)



date

Kind:   Built-in function  (EP standard)

Group:  Date and time

Format:  date(ts)

Parameter ts is a TimeStamp.  The function returns the date defined by ts as a string
value. (LRM 9.5.3)

The contents of ts may have been obtained by GetTimeStamp, or may alternatively have
been returned by a library routine or set individually by the program.  Field DateValid
must be true.



dec

Kind:   Built-in procedure (local)

Group: Mathematical/Numeric

Format:  dec(v [,n])

Parameter v is a variable-access of ordinal type (integer, char, enumerated etc).  It is
decremented by 1 or by the value of the optional integer n.

See also:    inc

delete

Kind:   Built-in procedure (local)

Group:  String handling

Format:  delete(s, inx, n)

Delete n characters from string variable s, starting at character inx.  Can also be applied
to short or wide strings.

See also:    insert



dispmem

Kind:   Built-in procedure (local)

Group:  Memory allocation

Format:  dispmem(p, size)

Dispose heap space of size bytes at position p^, obtained by procedure newmem.
Included for compatibility, alternative methods are recommended in new programs.
(LRM 9.4.5)

dispose

Kind:   Built-in procedure  (all levels)

Group:  Memory allocation

Format:  dispose(p)
 dispose(p, tag1 [,tag2 ...])

Dispose heap space at position p^, obtained by procedure new.  The version for variant
records quoting tag values must match the corresponding new.  (LRM 9.4.1-4)



echo

Kind:   Built-in procedure (local)

Group:  File handling

Format:  echo(txf, onoff)

This procedure is for use in console mode programs.  Parameter onoff is Boolean.
When true, output to textfile txf is echoed to the standard error handle.  (LRM 9.2.9.1)

empty

Kind:   Built-in function  (EP standard)

Group:  File handling

Format:  empty(ntf)

Parameter ntf is a direct-access (indexed) file, already associated with an external file.
This Boolean function returns true if the associated external file is empty.



eof

Kind:   Built-in function  (all levels)

Group:  File handling

Format:  eof [(f)]

Boolean function eof returns true if the external file associated with parameter f is at
end-of-file.  If no file is specified, standard input is implied.  (LRM 9.2.4.1)

See also:    eoln

eoln

Kind:   Built-in function  (all levels)

Group:  File handling

Format:  eoln [(txf)]

Boolean function eoln returns true if the external textfile associated with parameter txf
is at an end-of-line marker.  If no file is specified, standard input is implied.  (LRM
9.2.4.1)

It is an error to apply this function to a file which is at end-of-file.  Check eof first.



eq

Kind:   Built-in function  (EP standard)

Group:  String handling

Format:  eq(s1,s2)

This function compares two string values s1 and s2 taking account of lengths (see LRM
9.1.5) and returns a Boolean result which is true if s1 and s2 are equal.  It can also be
used to compare widestring variables.

exit

Kind:   Built-in procedure (local)

Group:  Miscellaneous

Format:  exit

Causes immediate return from the current procedure or function; in the case of a function,
the most recently assigned value of the function variable is returned. (LRM 9.7.6)  If used
within the statement part of a main program, it causes a jump to the end of the statement
part.  See also halt and return.



exp

Kind:   Built-in function  (all levels)

Group: Mathematical/Numeric

Format:  exp(x)

Returns the exponential of x (x < 710).  Argument x is any arithmetic type; if x is integer
or real, the result is real, if x is complex, the result is complex.

extend

Kind:   Built-in procedure  (EP standard)

Group:  File handling

Format:  extend(f)

Prepares file f for writing additional data following the current contents.  (LRM 9.2.3.8)

See also:    rewrite



FieldOffset

Kind:   Built-in function (local)

Group:  Machine level

Format:  FieldOffset(t,fld)

This function takes as arguments a record typename t and a fieldname fld in the record;
it returns the offset of the field within the record.  It is included primarily for use in API
calls, where the offset value is occasionally needed.  (LRM 9.7.5)

flipbit

Kind:   Built-in function (local)

Group:  Machine level

Format:  flipbit(loc, n)

Reverse bit number n at location loc to 1 and return the previous value as a Boolean
result (0=>false, 1=>true).  See also clearbit, setbit, testbit.  (LRM 9.6.1)



frac

Kind:   Built-in function (local)

Group: Mathematical/Numeric

Format:  frac(x)

Returns fractional part of real argument x; result is real. See also int.  (LRM 9.3.13)

ge

Kind:   Built-in function  (EP standard)

Group:  String handling

Format:  ge(s1, s2)

This function compares two string values s1 and s2 taking account of lengths (see LRM
9.1.5) and returns a Boolean result.  It can also be used to compare widestring variables.



get

Kind:   Built-in procedure  (all levels)

Group:  File handling

Format:  get(f)

This is the basic operation to advance a file which is in inspection (input) or update mode
to the next element, making it available in the file buffer.  (LRM 9.2.4.2)

See also:    put    read

GetTimeStamp

Kind:   Built-in procedure  (EP standard)

Group:  Date and time

Format:  GetTimeStamp(ts)

Parameter ts is of type TimeStamp.  The current date and time ("local time") is returned.
(LRM 9.5.2)



gt

Kind:   Built-in function  (EP standard)

Group:  String handling

Format:  gt (s1, s2)

This function compares two string values s1 and s2 taking account of lengths (see LRM
9.1.5) and returns a Boolean result.  It can also be used with widestring variables.

halt

Kind:   Built-in procedure  (EP standard)

Group:  Miscellaneous

Format:  halt [(exitcode)]

Terminate program execution without performing module finalization.  The non-standard
parameter exitcode defines the value that will be returned from the process.  (LRM 9.7.3)
If used within the main program, the non-standard procedures exit and return also cause
termination, with different effects.



HandleOf

Kind:   Built-in function (local)

Group:  File handling

Format:  HandleOf(f)

Returns the "handle" of an open file, or -1.  (LRM 9.2.9.2)

HeapUsed

Kind:   Built-in function (local)

Group: Memory allocation

Format:  HeapUsed

Returns an estimate of heap occupancy (bytes).  (LRM 9.4.6)

See also memavail.



im

Kind:   Built-in function  (EP standard)

Group: Mathematical/Numeric

Format:  im(z)

Returns the imaginary part of complex argument z.

See also:    cmplx    re

inc

Kind:   Built-in procedure (local)

Group: Mathematical/Numeric

Format:  inc(v [,n])

Parameter v is a variable-access of ordinal type (integer, char, enumerated etc).  It is
incremented by 1 or by the value of the optional integer n.

See also dec.



index

Kind:   Built-in function  (EP standard)

Group:  String handling

Format:  index(s1,s2)

Search for the first occurrence of string s2 in s1 and return the index number, or zero
if not found. Parameters s1 and s2 are general string values.  (LRM 9.1.2)

If an occurence has been found, the remainder of s1 can be examined using for
instance substr(s1,first+length(s2)) in place of s1.

See also:    pos    substr







LastPosition

Kind:   Built-in function  (EP standard)

Group:  File handling

Format:  LastPosition(ntf)

Parameter ntf is a direct-access (indexed) file, already associated with an external file.
This function identifies the last element of the external file.  The result type is the type of
the index.  (LRM 9.2.6.4)

le

Kind:   Built-in function  (EP standard)

Group:  String handling

Format:  le(s1, s2)

This function compares two string values s1 and s2 taking account of lengths (see LRM
9.1.5), and returns a Boolean result which is true if s1 is less than or the same as s2.  It
can also be used to compare widestring variables.



length

Kind:   Built-in function  (EP standard)

Group:  String handling

Format:  length(s)

Returns the current length of string s.  Parameter s may be a conventional string variable
or expression, or a widestring variable.  Result is integer.  (LRM 9.1.1)

ln

Kind:   Built-in function  (all levels)

Group: Mathematical/Numeric

Format:  ln(x)

Returns natural logarithm of x (x > 0).  Argument x is any arithmetic type; if x is integer
or real, result is real, if x is complex, result is complex.



LowerCase

Kind:   Built-in function (local)

Group:  Character operations

Format:  LowerCase(ch)
 LowerCase(str)

Parameter ch may be a character or wide character, parameter str is a string expression;
the result is same type as the parameter.  An upper-case letter is changed to the lower-
case equivalent, any other character being returned unchanged.  A string is returned with
any upper-case letters changed to lower-case equivalents.   See also UpperCase.  (LRM
9.7.8)

lt

Kind:   Built-in function  (EP standard)

Group:  String handling

Format:  lt(s1,s2)

This function compares two string values s1 and s2 taking account of length (see LRM
9.1.5) and returns a Boolean result which is true if s1 is less than s2.  It can also be used
with widestring variables.



ltrim

Kind:   Built-in function (local)

Group:  String handling

Format:  ltrim(sval)

Returns a string-type result obtained from sval by removing any leading spaces.  See
also trim.  (LRM 9.1.4)

max

Kind:   Built-in function (local)

Group: Mathematical/Numeric

Format:  max(x,y)

Arguments x and y can be of real type or any ordinal type (including for instance char or
enumerated); their types must be compatible.  The greater of x and y is returned.  See also
min.  (LRM 9.3.11)



memavail

Kind:   Built-in function (local)

Group:  Memory allocation

Format:  memavail

In earlier Pascal implementations this function returns an estimate of available heap space
(bytes).  It is retained only for compatibility, and is of limited use in the Win32
environment.  See HeapUsed.  (LRM 9.4.6)

min

Kind:   Built-in function (local)

Group: Mathematical/Numeric

Format:  min(x,y)

Arguments x and y can be of real type or any ordinal type (including for example char or
enumerated); their types must be compatible.  The smaller of x and y is returned.  See
also max.  (LRM 9.3.11)



move

Kind:   Built-in procedure (local)

Group:  Machine level

Format:  move(src, dst, len)

Copy len bytes from src to dst.  This procedure is retained for compatibility with
older implementations; in new programs almost all uses can be more safely achieved with
Extended Pascal features. (LRM 9.6.2)

ne

Kind:   Built-in function  (EP standard)

Group:  String handling

Format:  ne(s1,s2)

This function compares two string values s1 and s2 taking account of length (see LRM
9.1.5) and returns a Boolean result, which is true if s1 and s2 are different.  It can also be
used with widestring variables.



new

Kind:   Built-in procedure  (all levels)

Group:  Memory allocation

Format:  new(p)
 new(p,tag1[,tag2 ...])
 new(p,d1[,d2 ...])

Obtain heap space and define pointer p.  When the domain type of p is a record with
variants, tag values tag1 etc can be supplied to obtain space for a specific variant.
When the domain type is a schema name (including string or widestring), a
discriminant value or values d1 etc must be supplied and will determine the actual type
and size.
See also dispose.  (LRM 9.4.1-4)

newmem

Kind:   Built-in procedure (local)

Group:  Memory allocation

Format:  newmem(p,size)

Obtain heap space of "size" bytes and define pointer p.  Included for compatibility,
alternative methods are recommended in new programs. See also dispmem.  (LRM 9.4.5)



odd

Kind:   Built-in function  (all levels)

Group: Mathematical/Numeric

Format:  odd(i)

Argument i is integer type; the function returns a Boolean result  which is true if i is odd.
(It avoids any possible implementation dependency.)



OpenRead

Kind:   Built-in function (local)

Group:  File handling

Format:  OpenRead(f,fname)

Parameter f is a bindable file (of any component type), parameter fname is a string.
OpenRead attempts to bind f to an external file fname and prepare it for reading (see
procedure reset).  It fails if the file fname does not exist.  A Boolean result is returned,
which is true if the operation was successful.  See also OpenWrite below.

A file with read only attribute can be opened, but cannot later be extended or overwritten
(see LRM 9.2.3.4).

OpenWrite

Kind:   Built-in function (local)

Group:  File handling

Format:  OpenWrite(f,fname)

Parameter f is a bindable file (of any component type), parameter fname is a string.
OpenWrite attempts to bind f to an external file fname and prepare it for writing (see
procedure rewrite).  If fname is valid but no such file exists, it is created; if fname is
invalid (for example naming a nonexistant path) the function fails.  A Boolean result is
returned which is true if the operation was successful.  See also OpenRead.  (LRM
9.2.3.4)



ord

Kind:   Built-in function  (all levels)

Group: Mathematical/Numeric

Format:  ord(v)

Argument v can be of any ordinal type (such as enumerated, char or wchar).  Function
ord returns an integer having the same ordinal value. (LRM 9.3.7)

See also:    pred    succ

pack

Kind:   Built-in procedure  (all levels)

Group:  Miscellaneous

Format:  pack(unp,i,pkd)

Move successive elements from an array of unpacked elements to an array of equivalent
PACKED elements, starting at index i.  (See LRM 9.7.1 for details.)



page

Kind:   Built-in procedure  (all levels)

Group:  File handling

Format:  page [(txf)]

Cause a new page to be taken on textfile txf.  The file must be in generation (output)
mode.  If the parameter is omitted, standard file output is substituted.  (LRM 9.2.5.5)

pi

Kind:   Built-in function (local)

Group: Mathematical/Numeric

Format:  pi

This function introduces a very precise value of the constant pi.

polar

Kind:   Built-in function  (EP standard)

Group: Mathematical/Numeric

Format:  polar(r,t)

Return the complex value having r and t as magnitude and argument.  See also cmplx.
(LRM 9.3.6)



pos

Kind:   Built-in function (local)

Group:  String handling

Format:  pos(s1,s2)

Parameters s1 and s2 are general string values.  Function pos searches for the first
occurrence of string s1 in s2, and returns the index number, or zero if no match is found.
It is retained for compatibility; pos(s1,s2) is equivalent to the standard function
index(s2,s1).  See index.  (LRM 9.1.2)

position

Kind:   Built-in function  (EP standard)

Group:  File handling

Format:  position(ntf)

Parameter ntf is a direct-access (indexed) file.  This function returns the index of the
current element (ie ntf^) of the associated external file.  The result type is the type of
the index.  See also LastPosition.  (LRM 9.2.6.4)



pred

Kind:   Built-in function  (all levels)

Group: Mathematical/Numeric

Format:  pred(v [,n])

Parameter v is of any ordinal type, including enumerated, char or wchar.  The function
returns a value having the type of v and which is one less than v, or n less than v if n is
specified.  The optional second parameter is not available in unextended Pascal.   See
also succ.  (LRM 9.3.8)

put

Kind:   Built-in procedure  (all levels)

Group:  File handling

Format:  put(f)

This is the basic operation to advance a file in generation (output) or update mode to the
next element, after writing the current contents of the buffer variable to the external file.
(LRM 9.2.4.2)

See also:    get    write



raise

Kind:   Built-in procedure (local)

Group:  Miscellaneous

Format:  raise(ExcepName [,qualifier]
     [,intval] [,stringval])

Raise an exception (for instance to check exception handling code).  (LRM 9.7.10)  See
also RaiseUser below.

RaiseUser

Kind:   Built-in procedure (local)

Group:  Miscellaneous

Format:  RaiseUser(intval [,stringval])

Raise a User class exception.  Parameters intval and stringval are reproduced in the
notification, or can be examined in a TRY statement.  (LRM 9.7.10)



rand

Kind:   Built-in function (local)

Group: Mathematical/Numeric

Format:  rand

Returns a pseudo-random real value; values are uniformly distributed over the range 0.0
to 1.0.  See also seed.  (LRM 9.3.12)

re

Kind:   Built-in function  (EP standard)

Group: Mathematical/Numeric

Format:  re(z)

Returns the real part of complex argument z.  See also cmplx, im.



read

Kind:   Built-in procedure  (all levels)

Group:  File handling

Format:  read([txf,] v1 [,v2 ...])
 read(ntf, v1 [,v2 ...])

(a) Read one or more values from textfile txf and assign to parameters v1, v2 ...  If txf is
omitted, standard input is substituted.  The file must be in inspection (input) mode.
Conversion from external representation is performed automatically - see Textfile
input, readln, readstr.

(b)  Read one or more elements from non-text file ntf and assign to parameters v1, v2 ...
The file must be in inspection (input) mode.  Parameters must be assignment
compatible with file element type.   (LRM 9.2.5.1)

readln

Kind:   Built-in procedure  (all levels)

Group:  File handling

Format:  readln[(txf)]
 readln ([txf,] v1 [,v2 ...])

Procedure readln advances an input textfile to the beginning of the next line; if no file is
specified, standard input is substituted.  There may be parameters, which obey the same
rules as in procedure read, and are processed before advancing to the next line; that is,
readln(v1,v2) is equivalent to read(v1,v2) followed by readln.  (LRM 9.2.5.2)
See also Textfile input.



readstr

Kind:   Built-in procedure  (EP standard)

Group:  String handling

Format:  readstr(str, v1 [,v2 ...])

The string value str is treated as if it were a line of input from a textfile.  The contents
are transferred to parameters v1, v2 ... with appropriate conversions, as when reading
from a file.  See Textfile input.  (LRM 9.1.6)

reset

Kind:   Built-in procedure  (all levels)

Group:  File handling

Format:  reset(f)

The file variable f must already be associated with an external file.  It is put into
inspection mode, that is, prepared for input operations.  If the external file is empty,
eof(f) becomes true, otherwise the buffer variable f^ is positioned to the first file
element.  See also rewrite.  (LRM 9.2.3.7)





round

Kind:   Built-in function  (all levels)

Group: Mathematical/Numeric

Format:  round(x)

Function round takes a real argument x and returns an integer which is the integral part of
x after rounding away from zero.  See also trunc.  (LRM 9.3.4)

seed

Kind:   Built-in procedure (local)

Group: Mathematical/Numeric

Format:  seed(seedval)

The random number generator rand by default produces a different set of values at each
execution of a program.  Procedure seed initialises the generator, allowing the same
sequence to be produced each time.  Parameter seedval is an integer value.  (LRM 9.3.12)



SeekRead

Kind:   Built-in procedure  (EP standard)

Group:  File handling

Format:  SeekRead(ntf,elindex)

Parameter ntf is a direct-access (indexed) file.  SeekRead positions the file at element
elindex and puts it into inspection mode in preparation for reading.  See also SeekUpdate,
SeekWrite.  (LRM 9.2.6.1)

SeekUpdate

Kind:   Built-in procedure  (EP standard)

Group:  File handling

Format:  SeekUpdate(ntf,elindex)

Parameter ntf is a direct-access (indexed) file.  SeekUpdate positions the file at element
elindex and puts it into update mode in preparation for reading or writing.  See also
SeekRead, SeekWrite, update.  (LRM 9.2.6.1)



SeekWrite

Kind:   Built-in procedure  (EP standard)

Group:  File handling

Format:  SeekWrite(ntf,elindex)

Parameter ntf is a direct-access (indexed) file.  SeekWrite positions the file at element
elindex and puts it into generation mode in preparation for writing.  See also SeekRead,
SeekUpdate.  (LRM 9.2.6.1)

setbit

Kind:   Built-in function (local)

Group:  Machine level

Format:  setbit(loc, n)

Set bit number n at location loc to 1 and return the previous value as a Boolean result
(0=>false, 1=>true).  Bits are numbered from zero, being the least significant.  See also
clearbit, flipbit, testbit.  (LRM 9.6.1)



setlength

Kind:   Built-in procedure (local)

Group:  String handling

Format:  setlength(svar [,n])

Normally, string operations keep track of the length of the current contents of a string
variable automatically.  Procedure setlength is provided for the unusual situations when
the length must be set or overridden by the program, in particular when a string is
returned by an API call, and avoids assumptions about the layout of strings in memory.
Parameter svar is a string variable, which may be a conventional string, a shortstring or
a widestring.  Optional parameter n is the length to be established; if not present, svar is
scanned for a null character.  (LRM 9.1.8)



sin

Kind:   Built-in function  (all levels)

Group: Mathematical/Numeric

Format:  sin(x)

Returns sine of x (abs(x) < 2.14E9).  Argument x is any arithmetic type; if x is integer or
real, result is real, if x is complex, result is complex.  (LRM 9.3.2)

sinh

Kind:   Built-in function (local)

Group: Mathematical/Numeric

Format:  sinh(x)

Returns the hyperbolic sine of x (abs(x) < 710).  Argument x can be integer or real, result
is real.  (LRM 9.3.3)



sizeof

Kind:   Built-in function (local)

Group:  Machine level

Format:  sizeof(t)
 sizeof(v)
 sizeof(t, tag1[,tag2 ...])

Function sizeof has a parameter which may be a type t or a variable v.  It returns the
default memory occupancy.  The size must be one that is known at compile time.  When
the type is a record type with variants, tag values may be given as for procedure new.
Note that for purposes of alignment or efficiency, more storage may be allocated than the
minimum size for a type.  (LRM 9.7.5)



sqr

Kind:   Built-in function  (all levels)

Group: Mathematical/Numeric

Format:  sqr(x)

Argument x can be a value of any arithmetic type.  Function sqr(x) returns the square of x
(that is, x*x).  The result type is the type of x.  (LRM 9.3.1)

sqrt

Kind:   Built-in function  (all levels)

Group: Mathematical/Numeric

Format:  sqrt(x)

Argument x can be a value of any arithmetic type.  Function sqrt returns the square root
of x.  If x is integer or real, the result is real; if x is complex the result is complex.  (LRM
9.3.2)



StackUsed

Kind:   Built-in function (local)

Group:  Miscellaneous

Format:  StackUsed

Function StackUsed returns an integer value which is the number of bytes occupied by
the stack.  (If there is more than one thread active, each has its own stack, and the result
relates to the stack of the current thread.)  See also stkavail.  (LRM 9.7.11)

stkavail

Kind:   Built-in function (local)

Group:  Miscellaneous

Format:  stkavail

This function is retained for compatibility with older environments which provided a
limited amount of space for the stack.  It returns an integer result representing the number
of bytes remaining for expansion.  In a virtual memory environment, the amount of space
available for the stack is very large, and this function is not usually helpful.  See instead
StackUsed.  (LRM 9.7.11)



substr

Kind:   Built-in function  (EP standard)

Group:  String handling

Format:  substr(sval,inx [,len])

This function returns a substring extracted from the string value sval; the substring starts
at position inx in sval.  If the optional parameter len is present it defines the length of the
substring, otherwise the substring contains the tail of sval starting at inx.  (LRM 9.1.3)

succ

Kind:   Built-in function  (all levels)

Group: Mathematical/Numeric

Format:  succ(v [,n])

Parameter v is of any ordinal type, including enumerated, char or wchar.  The function
returns a value having the type of v and which is one greater than v, or n greater than v if
n is specified.  See also pred.  (LRM 9.3.8)

The optional second parameter is not available in unextended Pascal.  In Extended
Pascal, function succ can be used as inverse of ord for enumerated types; quote the first
enumeration constant as v and the ordinal value as n.



taddrof

Kind:   Built-in function (local)

Group:  Machine level

Format:  taddrof(vaccess)

Parameter vaccess is a variable-access; function taddrof returns a result of type ptr
representing the address of the access.  The access is "threatened" by the reference.  It is
intended in particular for API calls which require the address of a buffer to receive a
result such as a string.  (LRM 9.7.4)
See also addrof.



tan

Kind:   Built-in function (local)

Group: Mathematical/Numeric

Format:  tan(x)

Argument x can be integer or real (x < 2.14E9).  Function tan returns the tangent of x,
treated as radians.   (LRM 9.3.3)

tanh

Kind:   Built-in function (local)

Group: Mathematical/Numeric

Format:  tanh(x)

Function tanh returns the hyperbolic tangent of integer or real argument x (x < 710).
(LRM 9.3.3)



testbit

Kind:   Built-in function (local)

Group:  Machine level

Format:  testbit(loc, n)

Test bit number n at location loc and return the value as a Boolean result (0=>false,
1=>true).  Bits are numbered from zero, which is the least significant.  See also clearbit,
flipbit, setbit.  (LRM 9.6.1)

time

Kind:   Built-in function  (EP standard)

Group:  Date and time

Format:  time(ts)

Parameter ts is a TimeStamp.  The function returns the time defined by ts as a string
value. (LRM 9.5.3)

The contents of ts may have been obtained by GetTimeStamp, or may alternatively have
been returned by a library routine or set individually by the program.  Field TimeValid
must be true.



trim

Kind:   Built-in function  (EP standard)

Group:  String handling

Format:  trim(sval)

Returns a string-type result obtained from string value sval by removing any trailing
spaces.  A particular application is removal of space-padding from a fixed-string.  (LRM
9.1.4)
See also ltrim.

trunc

Kind:   Built-in function  (all levels)

Group: Mathematical/Numeric

Format:  trunc(x)

Function trunc takes a real argument x and returns an integer which is the integral part of
x after truncation towards zero.  See also round.  (LRM 9.3.4)



unbind

Kind:   Built-in procedure  (EP standard)

Group:  File handling

Format:  unbind(f)

Procedure unbind breaks an association between variable f and an external entity
(normally a file).  It is not an error if the variable is not already bound.  (LRM 9.2.3.5)
See also bind.

unpack

Kind:   Built-in procedure  (all levels)

Group:  Miscellaneous

Format:  unpack(pkd,unp,i)

Move successive elements from an array of PACKED elements to an array of equivalent
non-packed elements, starting at index i.  (See LRM 9.7.1)



update

Kind:   Built-in procedure  (EP standard)

Group:  File handling

Format:  update(ntf)

Parameter ntf must be an indexed file which is in generation or update mode.  The
current contents of the buffer variable ntf^ are written to the external file without
changing the position.  The recommended method of updating an element of an existing
file is to call SeekUpdate to position the file, modify the contents of the buffer variable,
and call update to replace the element in the external file.  See SeekUpdate, SeekWrite.
(LRM 9.2.4.3)

UpperCase

Kind:   Built-in function (local)

Group:  Character operations

Format:  UpperCase(ch)
 UpperCase(str)

Parameter ch may be a character or wide character, parameter str is a string expression;
the result is same type as the parameter.  A lower-case letter is changed to the upper-case
equivalent, any other character being returned unchanged.  A string is returned with any
lower-case letters changed to upper-case equivalents.   See also LowerCase.  (LRM 9.7.8)



wchr

Kind:   Built-in function (local)

Group:  Character operations

Format:  wchr(i)
 wchr(ch)

Function wchr returns the Unicode character corresponding to the integer value i (i >= 0),
or the 8-bit character ch.  Result is wchar type.  See also chr.  (LRM 9.3.7)

WideToStr

Kind:   Built-in function (local)

Group:  String handling

Format:  WideToStr(wstr,svar)

This function takes a Unicode string wstr, converts to 8-bit characters, and stores the
result in string svar.  It employs an API call, and returns a Boolean result which is true
provided no error was reported from the call.  If no equivalent character is available for
an individual Unicode character, a default is substituted; this is not an error condition.
(LRM 9.1.11)
See string, widestring.



write

Kind:   Built-in procedure  (all levels)

Group:  File handling

Format:  write([txf,] e1[:w[:p]] [,e2 ...])
 write(ntf, e1 [,e2 ...])

(a) Write one or more expressions e1, e2 ... to textfile txf.  If no file is specified, standard
output is substituted.  The file must be in generation (output) mode.  Conversion of
values to external representation is performed automatically, see Textfile output,
writeln.

(b) Write one or more expressions e1, e2 ... to non-text file ntf.  Expressions must be
assignment compatible with file element type.  The file must be in generation (output)
mode.
(LRM 9.2.5.1)

writeln

Kind:   Built-in procedure  (all levels)

Group:  File handling

Format:  writeln[(txf)]
 writeln ([txf,] e1[:w[:p]] [,e2 ...])

Procedure writeln inserts an end-of-line mark in the output textfile txf; if no file is
specified, standard output is substituted.  There may be parameters, which obey the same
rules as in procedure write, and are processed before the end-of-line mark is inserted; that
is, writeln(e1,e2) is equivalent to write(e1,e2) followed by writeln.  See Textfile output.
(LRM 9.2.5.2)



writestr

Kind:   Built-in procedure  (EP standard)

Group:  String handling

Format:  writestr(str, e1[:w[:p]] [,e2 ... ])

The values e1, e2 ... are converted to external format as for textfile write, and the result is
placed in the string str.  Conversion processes are described in Textfile output.  (LRM
9.1.7)

YesNoBox

Kind:   Built-in function (local)

Group:  Miscellaneous

Format:  YesNoBox(msg)

Display the string msg in a message box together with Yes and No buttons.  The function
returns a Boolean result which is true if the user responded Yes.  It is intended for use in
programs linked to run in the windowed stdio mode.

See also:    InfoBox



Textfile input

In textfile read, readln and readstr operations, the parameters v1, v2 etc can be variable
accesses of type char, Boolean, enumerated, fixed or variable string type, integer, real or
shortreal.

Type char obtains one character from the file or readstr source string.

Reading into a Boolean or enumerated type variable skips any leading spaces and is
terminated when an input character is encountered that is not alphanumeric or underscore
(typically, a space, comma or end-of-line).  The input must match one of the identifiers in
the enumeration, for Boolean these are 'false' and 'true'; the case of letters is not
significant.  An unrecognised identifier produces the undefined value for the type, which
raises an exception if assignment range checks are requested.

Reading into a string takes characters from the source until the destination is full, or end-
of-line or end of source string is reached.

Reading into a numeric variable skips any leading spaces and is terminated when the
input ceases to conform to the format of an integer or real number as the case may be
(typically, when a space, comma or end-of-line is encountered).  Note that real numbers
can be in certain forms that are not valid as constants in source programs, for instance .25
is accepted whereas the source constant must have a leading digit.  An error in the format
of the input causes an exception.





Object-Oriented programming

There is an introductory survey of the Object-Oriented features in the Introduction to
Extended Pascal, and the description here expands on that background.  The software
package includes a number of example programs that may be helpful.

Class types

Fields of objects

Methods

Constructors and destructors

Predefined entities

Working with objects

Export and import of classes

Class types

Class definitions

Class membership

Names of class features

Overriding inherited definitions

Abstract methods

View definitions

Class types describe the types of objects and the types of references.  These are
referred to respectively as object type and reference type.

When an object is created, it has all the features of its class; all fields, for example, are
present.  The process returns a reference value that uniquely identifies the new object.
A variable of a class type holds a reference value through which you can access the
object.  Reference values can be assigned or passed as parameters, much as Pascal
pointer values are assigned and passed.  There is an important difference, however.  A
pointer value must be of exactly the same type as the destination to which it is
assigned or passed; the corresponding requirement for a reference value is that the
object identified by the value must be a member of the class of the reference.  Because
an object is a member of all ancestor classes as well as of its own class, a class-type
variable can hold a reference identifying an object of its own class, or one of any
subclass.  When the value identifies a subclass object, the type of the variable dictates
that only the features which are present in its own class can be accessed.  The object
itself contains the additional features of the subclass, but these are not “visible”
through the ancestor-type reference.



For example, if a class Vehicle is defined, together with subclasses Car, Truck
and Motorcycle, a variable of type Vehicle can contain a reference to a
Vehicle object, or to a Car object, a Truck object, or a Motorcycle object.
Based on this variable, any features of the Vehicle class (such as a
NumberOfWheels field, say) can be accessed, but even when the reference
identifies say a Car object, the features particular to the Car subtype cannot.

The visibility of features in the object may be further restricted if the type of the
variable is a view of a class rather than a complete class.  A view is introduced
specifically to hide certain features of the class on which it is based, and allow access
to others.  A variable whose type was defined as a view can hold a reference to an
object of the base class, or of any subclass of the base class.  It only provides access,
however, to the subset of features which the view defined to be visible.

The relationship between objects and references is expressed in terms of class type
and reference type as follows.

A class type consists of an object type and a reference type.  Every
reference type is based on an object type; there may be a number of
reference types based on the same object type.

A CLASS definition introduces a new object type and a new reference
type.  A VIEW definition introduces a new reference type based on an
existing object type.

The kind of class (concrete, property or abstract) applies to the object
type, and cannot be changed by a view definition.

An object is created by naming a class type.  The class may have been
introduced in a class definition or a view definition; in either case the
object is created with the object type.  The object is then identified by a
reference value which is allocated at the time of creation.

A variable of a class type possesses the reference type, and holds a
reference value identifying an object (or the value Null).  The reference
type may or may not allow access to all components of the object.

In general usage, class-type variables are declared having a concrete class or a view of
a concrete class.  Nevertheless, it is possible to have a variable (or field or parameter)
of a property class type.  No object can be created with such a type, but when the
property is inherited by a concrete class, an object can be created, and the identifying
reference value can be assigned to the property-type variable.  The variable allows
access to just those features of the object that were inherited from the property class.



Class definitions

A class definition sets out a common structure for a group of objects, and the services
available to those objects.  It specifies the name and kind of class, its inheritance,
fields that each object will contain, and headings of methods, constructors and
destructors.

A class definition can appear in a type definition part of a program, module heading
or module block.  Class definitions cannot be introduced within procedure or function
declarations.  A class definition must introduce a new named type.

A property or abstract class has the word PROPERTY or ABSTRACT in its definition;
other classes are concrete classes.   A property class defines a set of related
components which can be inherited by other classes, making the basis for multiple
inheritance.  An abstract class is a placeholder in the concrete hierarchy, and defines
common contents for descendent classes.  Property and abstract classes have an object
type, but this defines the contribution that they make to an object rather than a
complete object.  Objects can only be created from concrete classes.

The following example shows a sequence of class definitions.

TYPE  Conc1 = CLASS            { Root implied }
                cf1,cf2: integer;
              END;
      Prop1 = PROPERTY CLASS   { no ancestors }
                pf1,pf2: char;
              END;
      Prop2 = PROPERTY CLASS   { no ancestors }
                pf3: Conc1;
              END;
      Prop3 = PROPERTY CLASS (Prop2)
                FUNCTION ready: Boolean;
              END;
      Conc2 = CLASS (Conc1,Prop1,Prop3)
                cf3: ARRAY [1..10] OF real;
              END;

An object of type Conc2 contains the inherited fields cf1, cf2, pf1, pf2 and pf3,
together with the field cf3 introduced in its own component list.  Type Conc2 has
also inherited the components of Root (via Conc1) and the function ready from
Prop3.  All the definitions are classes (rather than views), and the reference types
make visible all the components of each class.



A class definition can be “deferred”, to provide the possibility of introducing
references of the new class type as fields, parameters, or function results.  To do this,
the name is first introduced thus:

TYPE  newclass = CLASS .. END;

If the class is to be a property or abstract class, the word PROPERTY or ABSTRACT
must precede CLASS.  Later in the same type-definition-part the actual definition
must be provided.  The class name cannot be used before its definition is complete
unless a deferred definition precedes the use.

A class definition may specify an inheritance list, that is, a list of class names from
which the new class directly inherits fields, methods, constructors and destructors.  In
practice, most class definitions include an inheritance list; if present, it is contained
between parentheses.  A class name in the inheritance list may have been introduced
in a class definition or a view definition.  The new object type contains all the
components of the object types of its ancestors; the new reference type makes visible
the components of the new object type which were visible in the reference types of its
ancestors.  Inheritance provides the means of defining an extension or refinement of
an existing class.

A concrete or abstract class can inherit from not more than one concrete or abstract
parent.  If a new concrete or abstract class has no inheritance list, or names only
property classes, it inherits automatically from the Root class.  A property class can
inherit only from other property classes.  Any class can inherit from zero or more
property classes, provided that these classes have no common ancestor.  It cannot
inherit from itself, more than once from the same class, or from two classes with a
common ancestor.  The inheritance model implied by these rules is one in which
multiple inheritance is restricted to separately-rooted trees; the example above
illustrates a valid inheritance pattern.

After the inheritance list, the class definition lists any new features which are to be
added to the type.  There may be fields, which will form part of each object, or
methods (procedures and functions), constructors and destructors.  Methods,
constructors and destructors are collectively called procedural items.  Fields are
declared like variables or record fields; a class procedural item is represented by its
heading, with parameter list and (for a function) result type.  The list can also contain
headings of procedural items which are inherited from an ancestor class and
overridden in the new class.

Class membership

An object is a member of its object type, and of all ancestors of its object type.
Membership determines the validity of certain operations, and can be tested using the
IS operator.



Names of class features

The names of new features (fields and procedural items) in a class component list
must not introduce possible ambiguities.  Specifically, a name must not have the same
spelling as (a) the name of the new class, (b) the name of any ancestor class or view,
(c) the name of any visible inherited component, or (d) the parameter self.

The names in a class follow the same scope rules as field names in a record type;
briefly, they are local to the class, and the names visible in the reference type come
into scope when a variable of the type is accessed.  The scope can also be opened by a
WITH statement quoting a reference to an object.

Overriding inherited definitions

When a method, constructor or destructor is inherited from a parent class, its actions
can be overridden.  Any procedural items can be overridden; the effect of overriding
is to substitute a new declaration which redefines the action taken when the item is
activated.  The new version forms part of the object type of the new class, and is
inherited by descendant classes.

The name of the item is included in the component-list of the new class, followed by
the directive override.  The signature of the item (parameter list and function
result type) cannot be changed when overriding; it can be omitted or repeated, and if
repeated must agree with the original.

        FUNCTION ready: Boolean; override;

The override directive is essentially a confirmation that the name was intended to
match an existing name, and that the repetition is not an error.  The new declaration
(body) must appear in the program block, or in the block of the module in which the
new class is defined.

Abstract methods

A method, constructor or destructor introduced into a class type may be marked
ABSTRACT, for example

FUNCTION Precedes (x: Root): Boolean; ABSTRACT;

An abstract procedural item is permitted only in a property class or an abstract class.
An inherited non-abstract method cannot be made abstract in a descendant class.   No
implementation is provided for an abstract method in the class in which it is defined,
but must be provided in a descendant class at least by the point when a concrete class
is defined.  A concrete class cannot contain an abstract method which has not been
overridden and provided with an implementation.



View definitions

A view definition introduces a new reference type based on an existing object type,
which must already be fully defined (that is, not deferred).  A view definition can
appear only in a type definition part of a program, module heading or module block.
It  can specify visibility by means of class names, component names, or both.  If there
are class names, the list is contained between parentheses.  A class name must be
either an ancestor class of the base class or a previously defined view of the same base
class.  (The latter allows nested views of the base class to be built up starting with the
most restricted.)  All visible components of the base class that were visible in the
named class are included in the new view.   A list of components names individual
components that are to be included in the view, which must be visible components of
the base class.  The new view is formed from the OR of the two lists.

A view of a concrete class, to be useful, is likely to include a constructor.  The
following example shows a view based on the class Conc2.

TYPE  View2 = VIEW OF Conc2 (Prop1)
                Create,cf3
              END;

The list of classes simply names the ancestor type Prop1, the list of components
adds the constructor Create and the field cf3.  The view contains the fields pf1
and pf2, inherited from Prop1, constructor Create inherited from Root, and field
cf3 from Conc2 itself.  The other fields and the function ready are not visible, nor
are the other items inherited from Root.  Field names pf1 and pf2 could have
appeared in the component visibility list, but would make no difference to the
contents of the view.

Like a class definition, a view definition can be “deferred”, and the notation for
introducing it is similar:

TYPE  newview = VIEW OF baseclass .. END;

Later in the same type-definition-part the actual definition must be provided.

A class definition may name a class view as an ancestor.  The object type of the new
class will include all the components of the object type upon which the view was
based, and the reference type of the new class will contain the components that were
visible in the view; the reference type may not (indeed, probably will not) make
visible all the components of the new object type.  When a class with restricted
visibility is quoted as an ancestor or as the base of a new view, components cannot be
made visible that were not already in its reference type; that is to say, a new subclass
or view cannot recover visibility previously removed.

A field name in a view definition may be made PROTECTED, and any access to the
field through a reference of the view-type must then not “threaten” it.  If the view is
exported, either by name or as the type of a reference, an importer can obtain the
current value but not modify the field.  The protection is inherited if the view type is
named as an ancestor.  Because this precludes an overriding method from making any
change, protection should be applied with care.



Fields of objects

Fields introduced in a class definition form part of the object type of the class.  They
are instance variables, that is, they are reproduced each time that an object of the type
is created.  The type of a field is given by a type denoter, which allows any named
type, new type, or discriminated schema, but not a new schema definition or new
class definition.  A deferred class definition is permitted as the type of a field.  A field
defined with a class type holds a reference to an object.

The type of a field may be a type produced from a schema, and may be one whose
size is not known prior to execution of the program. The layout of fields within an
object follows the order in which they are introduced in the component list, and as
with records there is some advantage in fields of schematic types whose size is not
known until run-time being placed last.

A field in the object type of a class is inherited by the object type of every descendant
class.  The name of a new field also forms part of the reference type of the class in
which it was introduced, and of descendant classes, but may be excluded from a view
based on the original class or a descendant.

A field may be defined with an initial state (initial value), either through the initial
state being associated with the type of the field or through it being given in the field
declaration. The initial state is supplied automatically when an object is created, and
for constant values this is the recommended way of ensuring that a new object is in a
well-defined state.

Statements can access fields of an object with two notations, again similar to fields of
records.  The first is to name an object reference followed by a period and the name of
the field.  Alternatively, a WITH statement quoting an object reference brings into
scope the names of all components of the object that are visible in the reference type,
and they can be accessed immediately.  A special case is the declaration (body) of a
class procedural item, where all components of the class are immediately accessible,
as though an implied WITH surrounded the declaration.



Methods

A method is a procedure or function that provides a service for objects. Methods are
introduced into a class definition by including their headings in the component list,
and form part of the object type of the class and all descendant classes.  For a non-
abstract method there must be a declaration in the program block or module block, as
described below.

Method heading

Method declaration

Method activation

Method heading

The method heading includes the parameter list (if any) of the method, and the result
type of a function.  Value and variable (VAR) parameters may be of any named type
that is in scope, including class types, or may be of conformant array type.  A method
may have a procedural or functional parameter, but only conventional procedures and
functions can be passed as actual parameters; a method cannot be passed as an actual
parameter, either to another method or to a conventional procedure or function.  The
result type of a method function may be any named type that is in scope, including a
class type (which returns a reference).   An extra formal parameter called self is
automatically supplied for every method, even if it has no parameter list in its
heading.  It is a value parameter whose type is the class in which the method is
defined.

The overriding of methods was introduced earlier.  An overriding version of a method
is included in the object type of a new class in place of the original, and is inherited
by descendant classes unless it is overridden in its turn.

Method declaration

The declaration of a method defines the actions to be performed when the method is
activated.  It takes the form of a procedure or function declaration in which the
identifier that names the item is preceded by the class name, for example

FUNCTION Prop3.ready: Boolean;

The signature may be repeated, and will make the code more readable; the directive
override may also be repeated where appropriate.  The rest of the declaration is a
procedure-block or function-block, which can introduce labels, constants, types and
local variables as in conventional procedure or function declarations.



When a method is activated, as described below, an object reference is automatically
passed in place of the formal parameter self.  Within the declaration of the method,
self provides a reference value, and for most purposes may be used just like any
other value parameter of class type.  It can be assigned, compared or passed as an
actual parameter in calls of other methods.  It may not, however, be used in a
destructor activation.

Within the statement part of the method block, the names of all visible components of
the class in which the method is defined are in scope, and can be accessed without
qualification.  Any fields are those of the object through which the method was
activated.  The scope which makes available the component names encloses the whole
method declaration, so it is possible for a locally-declared name, such as the name of
a local variable, to obscure a component name, but this situation can normally be
avoided because the definition of the class type is known when the method
declaration is coded; if it arises the local name takes precedence, and the component
must be accessed as self.componentname.

The declaration of a method may include activation of visible methods inherited from
ancestor classes.  A particular and quite common use when overriding is to activate
the inherited version at the start of the new implementation.  This ensures that any
changes made to the inherited version are carried through automatically.  The version
of a method from an immediate parent class is activated as “INHERITED
methodname”; more generally, the form “classname.methodname” can be
used for more distant ancestors.

A method declaration may include nested procedures or functions.  The nested
declarations can use the self parameter, and the object components are accessible,
just as in the immediate method block.

Method activation

A method can be activated only through a reference, either explicit or implied.  It
cannot be called directly from non-object code.   An activation with a specific
reference takes a form similar to access to a field, that is, an object reference followed
by a period and the name of the method.  If the method has a formal parameter list,
actual parameters must be supplied as in the call of a conventional procedure or
function.  If the method is a procedure the activation is a form of procedure statement;
if it is a function the activation is a form of primary.  The reference through which the
method was activated is supplied as the actual corresponding to the formal parameter
self.

The INHERITED and ancestor-name forms are valid only within the body of a
method, when invoking the versions of methods inherited from ancestor classes as
described in the previous section.  The self supplied to the method making the call
is passed on to the called method as its self parameter.



Constructors and destructors

A constructor defines actions to be performed when an object is created; a destructor
defines actions to be performed when an object is removed.  Although new
destructors can be introduced, their use is not recommended; where possible, any
special actions needed should be undertaken by overriding the destructor Destroy
inherited from Root.  A constructor or destructor is introduced into a class definition
by including its heading in the component list; it forms part of the object type of the
class and all descendant classes.  A non-abstract constructor or destructor must have a
declaration in the program block or module block, as described below.

Constructor and destructor headings

Constructor and destructor declarations

Constructor activation

Destructor activation

Construction of objects

Destruction of objects

Constructor and destructor headings

The heading for a constructor or destructor begins CONSTRUCTOR or DESTRUCTOR,
and includes the list of formal parameters, if any.  Value and variable (VAR)
parameters may be of any named type that is in scope, including class types, or may
be of conformant array type.  A constructor or destructor cannot be passed as a
parameter.  An extra formal parameter called self is automatically supplied for
every constructor and destructor, even if it has no parameter list in its heading.  This is
a value parameter whose type is the class in which the item is defined.   A heading
may be marked ABSTRACT or override; an overriding version of a constructor or
destructor is included in the object type of a new class in place of the original, and is
inherited by descendant classes unless it is overridden in its turn.

Constructor and destructor declarations

The declaration of a constructor or destructor defines actions to be performed when
objects are created or destroyed, which will include activating any inherited
constructors or destructors.

The identifier that names the constructor or destructor is preceded by the class name
and a period, as in declaration of methods, and the signature can optionally be
repeated.  The rest of the declaration is a procedure-block, which can introduce labels,
constants, types and local variables as in conventional procedure declarations.



Within the statement part of the procedure block, the names of all visible components
of the class in which the constructor or destructor is defined are in scope, and can be
accessed without qualification.  The only exception to this rule is when a component
name is “masked” by a parameter or local variable name having the same spelling, as
described in 13.4.2.

Again as in method declarations, the parameter self provides a reference value, and
may be used as a value parameter of class type.  Its type is that of the class in which
the constructor or destructor was defined.

The activation of inherited constructors and destructors is described below.  The
version from an immediate parent class can be activated as INHERITED itemname, or
for a version from a specific ancestor the form “classname.itemname” can be used.

A constructor or destructor declaration may include nested procedures or functions.
The nested declarations can use the self parameter, and the object components are
accessible, just as in the immediate procedure block.

Constructor activation

A constructor can be activated either by a constructor-access (which creates a new
object) or by a constructor-statement.  A constructor-access is a form of primary;  it is
accompanied by obtaining the space for a new object and setting the initial states of
fields, and returns a reference value which uniquely identifies the newly-created
object.  A constructor-statement is used in the body of a constructor to activate a
constructor in an ancestor class.

A constructor-access is introduced by the name of a concrete class, and the object is
created having the object type of that class.

    VAR   Cref: Conc2;
      ..
      Cref := Conc2.Create;

The constructor identifier must be visible in the reference type of the class.  A
constructor defined in a property class can be activated only by means of a
constructor-statement in a descendant.  The INHERITED and ancestor-name forms
allow reference respectively to the immediate parents and to ancestor classes more
generally, as in the activation of inherited methods (see Method activation).

When a constructor is activated, any actual parameters are evaluated, and the object
then temporarily adopts the type in which that version of the constructor was declared.
Methods activated by the constructor will be the versions appropriate to the adopted
type.  This is an exception to the general rule concerning behaviour of objects, and is
designed to ensure that the new object can be initialised safely.  An overriding
definition of a method might refer to parts of the object that were not yet ready, with
unfortunate consequences



Destructor activation

A destructor is activated through a reference to an object which is to be removed from
its class. For instance, if Cref contains a reference to an object, the following
statement will cause the object to be destroyed.

      Cref.Destroy;

The object-reference in an initial destructor activation must be of a concrete class
type.  A destructor defined in a property class can be activated only by means of a
destructor-statement in a  descendant class.  The INHERITED and ancestor-name forms
are for reference respectively to the immediate parents and to ancestor classes more
generally.

The initial destructor may activate destructors in ancestor classes, and these are called
continuing destructor activations.  During a continuing destructor activation, the
object temporarily adopts the type of the destructor, and this change governs the
activation of methods, as described above for constructors.



Construction of objects

It is recommended that initial state specifiers should be employed where possible to
initialise fields of a new object, and that constructors be written only to perform other
kinds of preparation, such as initializations that involve run-time values, linking the
new object to a chain, or incrementing a global count.

If a class inherits non-abstract constructors from more than one parent, a non-abstract
constructor must be included in the class.  This will often be an overridden version of
one of the inherited constructors, but may be new.  It should first activate the inherited
constructors, so that the object is properly defined, and then perform any specific
tasks.  In the common situation of a new concrete class inheriting a property class, a
version of Create will always be inherited from its concrete parent, and if the
property class also contains a constructor a new constructor must be provided.
Typically, this will be by overriding the inherited Create.

Destruction of objects

As a rule, it is simpler to destroy an object than to create one, but there may be need
to detach the object or to decrement a count, and such operations are appropriately
performed by a destructor.  Destruction should normally proceed in the reverse of the
order of construction, with calls of inherited destructors made after any specific
actions have been performed.

Once an initial destructor activation has commenced, the state of the object is not
reliable, and any use of the reference value that identifies the object (for example by
another thread) is an error.  On completion of the initial activation, the object is
removed from the class.



Predefined entities

There are four predefined entities associated with objects, a constant (Null), two
class types (Root and TextWritable) and a function (Copy).

Null

The identifier Null represents a constant that is compatible and assignment-
compatible with any variable of class type, and represents no object.  Every reference
variable or field is automatically given the value Null as its initial state.  A reference
may be compared against Null, and Null may be assigned or passed as an actual
value parameter.  An exception is raised if an attempt is made to use a reference
which holds the value Null to access a component of an object.

There is a clear analogy with NIL and pointer types, and the analogy is helpful, but NIL
and Null are not interchangeable.

Root

The identifier Root denotes an abstract class that is an ancestor of every user-defined
concrete or abstract class.  If the definition of a concrete or abstract class does not
specify a concrete or abstract parent in its inheritance list, direct inheritance from
Root is implied.  If the definition of the Root class was written in a program it
would appear as follows.

TYPE  Root = ABSTRACT CLASS .. END;
      Root = ABSTRACT CLASS
               CONSTRUCTOR Create;
               DESTRUCTOR Destroy;
               FUNCTION Clone: Root;
               FUNCTION Equal(R: Root): Boolean;
             END;

The preliminary deferred definition is needed because of the two applied occurrences
within the actual definition.  There is a slightly artificial aspect of this presentation,
because it is the one abstract class with no inheritance list that does not inherit from
Root.  The components Create, Destroy, Clone and Equal are described
below.



Create  A constructor-access quoting Create as the constructor name obtains space
for the new object, sets any defined initial states, invokes the version of Create
appropriate to the type, and returns a reference to the object.  The version of Create
in the predefined Root class does nothing further, but is available to be overridden
when the process of creating a new object involves actions (such as counting the
number of live objects, say).

When overriding a constructor, the first statement in the declaration should normally
be a constructor-statement to activate the inherited version.  This ensures that at each
stage the new object is in a correct state for any further actions to be performed.

Destroy  An initial destructor activation quoting Destroy as the destructor name
invokes the version of Destroy appropriate to the object type, and on completion
removes the object.  The version of Destroy in the predefined Root class does
nothing except remove the object, but is available to be overridden in descendant
classes when there are actions needed.  The declaration of an overriding version of a
destructor should normally conclude by activating the inherited version.

Clone  There is a predefined function Copy for reproducing an object.  The
functional method Clone in the Root class returns the result of applying Copy to
the parameter self.  It is available to be overridden in descendant classes when there
are actions associated with correctly establishing the new object, much as when
Create is overridden.  The recommended approach is that the first statement in an
overriding version of Clone should activate INHERITED Clone.  After calling the
inherited version, the new object is in a suitable state for actions appropriate to the
inheriting class to be performed.

Function Clone as inherited from Root cannot be activated if the object type
includes a file, or a structured type containing a file.   (See assignment compatible.)

The following is an outline declaration of an overriding version of Clone in a
concrete class newclass.

FUNCTION  newclass.Clone: Root; override;
  VAR  x: newclass;
  BEGIN
    x := newclass(INHERITED Clone);
    ...
    Clone := x;
  END {newclass.Clone};



It is assumed here that the reference variable x of type newclass is needed by the
statements shown as an ellipsis, whose actions were the reason for introducing the
overriding version in the first place.  If they do not require a reference to the new
object, x can be omitted and the outline can be simplified:

FUNCTION  newclass.Clone: Root; override;
  BEGIN
    Clone := INHERITED Clone;
    ...
  END {newclass.Clone};

Equal  The functional method Equal as defined in Root compares the references R
and self, and returns true if they identify the same object.  In this form it is
therefore equivalent to a simple comparison of the two references, but can be
overridden in descendant classes to modify this behaviour, for instance by comparing
fields.

TextWritable

The identifier TextWritable denotes a property class containing two procedural
methods.  If the definition of TextWritable were to appear in a program, it would
look like this.

TYPE  TextWritable =
          PROPERTY CLASS
            PROCEDURE ReadObj (VAR f: text);
            PROCEDURE WriteObj (VAR f: text);
          END;

As predefined, the procedures ReadObj and WriteObj do nothing. The intended
usage is for TextWritable to be inherited and one or both of the procedures to be
overridden.  The overriding version of ReadObj should read an object from its
parameter f and that of WriteObj should write an object to its parameter f.  When
an inherited class includes TextWritable among its ancestors, the new version
calls INHERITED ReadObj (or WriteObj), and adds statements to read or write any
fields added  in the new class.



Copy

Copy is a predefined function with one parameter, a reference to an object.  The
object type of this reference must be a concrete class type.  Copy creates a new object
of the same object type, and copies the fields of the original to the new object.  It then
returns a reference to the new object, the type of this reference being that of the
original parameter.

NewRef := copy(ObjRef);

The parameter to Copy must be one whose fields are all of assignable types, in
particular they must not include any file or structure containing a file.  It is an error if
any field is undefined at the time Copy is invoked.

Note that there is another predefined function Copy that takes a string as its first
parameter.  Provided they are used correctly there is no risk of confusion.

Working with objects

Much of the preceding description has been concerned with defining classes, and
implementing constructors and methods.  To use a class, however, you should only be
aware of the functionality that the originator wished to make available, and most often
this will be in terms of creating objects, and invoking methods to perform actions on
or with them.  It is the purpose of this part of the description to bring together the
relevant details, and show how they link into conventional Pascal.  When the original
definition does not fully meet your requirements, of course, you may consider
defining a subclass to add to the capability.

Primaries  An access to a field of an object, and the activation of a constructor or a
functional method, can be used as forms of primary within expressions.

Compatibility  The following rules on compatible and assignment-compatible types
relate to classes.

All class references, and Null, are compatible in comparisons.

A value of a reference type T2 is assignment-compatible with a reference
type T1 if the base type of T2 is the same as the base type of T1, or
inherits from the base type of T1.

The value Null is assignment-compatible with all reference types.

The rule of assignment-compatibility of reference types permits assignment to a
property-class reference provided that the object inherits that property.



Assignment  An assignment statement attributes a reference value identifying an
object, or the value Null, to a variable possessing a class type.  The assignment-
compatibility requirements in the previous paragraph must be observed.  Assignment
of a reference value does not affect the object itself.

An access to a field of an object may be the destination of an assignment, provided
the type of the field is assignment-compatible with the value being assigned.  The fact
that it is a field of an object does not affect the operation.

Reference coercions  A class-type variable can hold a reference value which
identifies an object of its own type or of any subtype. The assignment-compatibility
rule allows “up-level” assignment to an ancestor type.  However, situations arise in
which a variable is known to hold a subtype reference, and a reference coercion
allows the type of the variable (the ancestor type) to be transformed to this subtype.
A run-time check is performed, and an exception is raised if the coercion is not valid.

Returning to the Vehicle hierarchy introduced earlier, if a variable v of type
Vehicle which is known to hold a reference to a Truck object, the reference can
be assigned to a variable of type Truck, or passed as a parameter of type Truck, by
writing Truck(v) .  That is, you coerce the reference by writing the type name
followed by the reference in parentheses.  If the reference was not in fact to a Truck
object, but to a Vehicle object, or say a Car object, the coercion would raise an
exception.

Comparison  The relational operators “=” and “<>” can be used to compare reference
values.  The result of “=” is true if both operands contain the value Null or both
identify the same object, otherwise the result is false.  The result of “<>” is the
logical negation of “=”.  Because a reference value uniquely identifies an object,
equal values identify the same object.  See also the predefined function Equal.

Parameters  A reference value can be passed as an actual value parameter
corresponding to a value formal parameter of class type, provided that the
assignment-compatibility requirements are met.  As with other types, the actual
parameter corresponding to a variable (VAR) formal parameter must be a variable-
access of the same type as the formal parameter.

A field of an object can be passed as an actual value or variable parameter provided
the type of the field is appropriate to the kind and type of the corresponding formal
parameter.  The fact that it is a field of an object does not restrict its use as an actual
parameter; however, when passed as an actual VAR parameter it is an error if the
object is destroyed before return from the call.



IS operator   The class membership operator IS allows you to check the type of an
object identified by a reference.  The left operand is the reference and the right
operand is a class name.  The operator returns true if the object is a member of the
class (that is, the type of the object is the same as, or inherits from, the class).
Referring to the definition of class Conc2, an object of type Conc2 is a member of
Root, Conc1, Prop1, Prop2, Prop3 and Conc2, but an object of class Conc1 is
a member of Root and Conc1 only.

It will be seen that this test is closely related to the run-time check involved in a
reference coercion, and can be used to check in advance the validity of a coercion,
particularly if run-time exceptions are to be avoided.  Alternatively, you may prefer to
guard the coercion with a TRY statement.

WITH statement  A WITH statement that contains a reference to an object brings into
scope the identifiers of all fields, methods and destructors that are visible in the type
of the reference.  Fields are accessed, and methods and destructors activated, by
quoting the component name only.  In the activation of methods and destructors, the
value of the reference in the with-element is passed as self.

As with records addressed by pointer dereference, the object-reference is evaluated at
the point of the WITH statement and is not affected by operations performed by the
dependent statement.  It is an error if the object is destroyed during execution of the
dependent statement.



Export and import of classes

Like other types, class types and views can be exported by naming them in an export-
list.  Exporting a view allows the originator to restrict access by importers to those
components of a class that are visible in the view.  Some special considerations
applying to export, import and use of classes are described below.

Ancestor classes

Export of a class automatically results in the definitions of all ancestor classes being
included in the interface, and this may represent a significant amount of information.
Another important consideration is that while the contents of these ancestor classes
are automatically included, their names are not, but must be specified in the list if they
are to be available to an importer.  Without these names, a user can import the class,
define a subclass, and refer to INHERITED methods, but not to methods in named
ancestor classes.  The user also cannot define subclasses based on ancestors.  While
export of a view gives the exporter control of the range of components that are visible,
the inclusion or exclusion of ancestor names should also be kept in mind as
significantly affecting the uses to which an imported class can be put.

Feature renaming

When a class or view is exported, it can be renamed in the same way as other
constituents.  A notation is also available for renaming individual features of the class
or view, by means of feature renaming.  Feature renaming can only be used when the
constituent is a class type.

An identifier introduced by feature renaming is subject to the rules that apply to the
names of new components in a class definition, and in particular must not be the name
of an ancestor class or of a visible feature of the class.  The new name identifies the
component in the exported class and in any subclass derived from it.

Feature renaming on export provides a means of avoiding some possible sources of
difficulty when classes which were originated independently are to be inherited.  For
example, a module can be introduced which simply imports a class and adapts it by
re-exporting with one or more components renamed.  However, there are a two points
to beware of.   The first is that when a component has been inherited by two or more
classes, renaming it in one does not affect its name in any others.  The other is that the
renaming does not modify the original class. When a class is exported with feature
renaming, imported, and a subclass formed from it, the implementation of any
overridden method must refer to the INHERITED version quoting the name by which it
was originally known.  This implies that the importer has knowledge of the names in
the exporting module, so renaming of methods should be avoided where possible.



Violations, errors and exceptions

To err is human, they say, and even programmers sometimes make mistakes.  This
section gives an outline description of the ways in which the language can help you avoid
mistakes, and the implementation can help you to eliminate those that still get through.

Pascal contains features which are intended to assist in the production of robust
programs.  (It is not unique in this, but it has generally been one of the leaders as
programming languages have developed.)  Some references to this aspect have been
made earlier, and to summarise here are a few guidelines:

Make the names you devise work for you.  Meaningful names are a big help, both
to others, and to yourself when you revisit your work later.

Introduce named constants, particularly when they are used more than once.

Define enumerated types for collections of related items (days of the week,
colours of the rainbow, fonts, kinds of locomotive, and so on).  These groups of
names are kept distinct from one another and from other items such as variables.

Use procedures and functions to break up code into pieces of manageable size, as
well as to avoid duplication. Procedures can “encapsulate” subsidiary actions, and
allow attention to be concentrated on different levels of detail.

If the situation justifies it, employ modules as another intermediate level, or when
parts of a program may be re-used.  You can export named constants and types
from a module, as well as variables, procedures and functions.

This implementation of Extended Pascal includes a range of facilities for detecting
mistakes, both at compile time and when a program is run.  Some checks are always
performed, others are specially requested by means of compiler options.  The standard
uses the word violation for an illegal construct that an implementation must detect, and
the word error for one that it may not be feasible to find (typically, one that involves run-
time checking).  The majority of violations are detected during compilation, a few
involve run-time checks.

Typical examples of “errors” are array index values outside the bounds with which the
array was declared, or references to character positions in a string beyond the current
contents, which will generally produce nonsense values.  If you suspect such problems
you can ask for checks to be incorporated in your program by the compiler – see the
Compiler Options in the Workbench Build menu for instance.  Some kinds of error are
always checked, an example is attempting to read past the end of an input file.  Other,
more subtle, kinds of error arise from using a copy of an out-of-date pointer, mistakes in
the use of variant records, or reference to a variable to which no value has yet been given,
for which checking is optional.  Overall, this implementation is unusually well provided
with optional checks.



Besides these general checks, there is a means of defining specific checks at individual
points in your code.  The assert procedure is given a condition which you believe to
be true, and you can request the compiler to generate a check at that point, otherwise the
assertion is ignored.  As a simple example, you could assert when entering one of your
own procedures that a pointer parameter is not NIL, or a string contains at least four
characters.  These are assumptions you made when coding your procedure, and if they are
not satisfied the call is in some sense incorrect.

The failure of any run-time check raises an exception.  Generally, an exception is
notified to the user of the program as a message, which includes details of the kind and
location of the failure.  During testing, you can use the information in the message to
track down the mistake that gave rise to it.  However, in a production program you can
choose to intercept particular exceptions, such as those arising from input of faulty data.
You do this by means of TRY statements.

Occasionally it may be convenient to raise an exception of your own, which you can do
with the RaiseUser procedure.  This is not as a rule appropriate in simple programs,
but if in a more complex application a situation arises in a nest of procedure calls that
cannot be handled at that point, an exception can be raised that is intercepted further
back, where some general escape can be provided.

Following is the classification of causes of exceptions, which appears in notification
messages and is used in the coding of TRY statements.  There is a general division
between “language” exceptions resulting from run-time checks on Pascal usage, “system”
exceptions such as implementation, and “user” exceptions originating from calls of the
RaiseUser procedure.  The language exceptions are grouped into various categories,
and within these categories are more specific causes.

Here is the outline classification; the full list is in the following section.

Language
Access
Assignment
BindUnbind
Control
File
Format
Nonstatic
Numeric
Variants
Other

System
User



Exception classes

ExcepLanguage

ExcepAccess
ExcepArrayIndex
ExcepStringIndex
ExcepSubstring
ExcepPointer
ExcepField
ExcepAccessViolation
ExcepRefUndefined
ExcepRefExists

ExcepAssignment
ExcepOrdinalValue
ExcepStringOverflow
ExcepSetOverflow
ExcepStructuredValue
ExcepClassError

ExcepBindUnbind
ExcepNonbindable
ExcepAlreadyBound
ExcepFileType
ExcepIncomplete

ExcepControl
ExcepCASE
ExcepGOTO

ExcepFile
ExcepUndefinedFile
ExcepIncorrectMode
ExcepUndefinedBuffer
ExcepDirectAccess
ExcepReadOnly
ExcepAtEndOfFile

ExcepFormat
ExcepInputInteger
ExcepInputNumber
ExcepTotalWidth
ExcepFracDigits
ExcepReadstr
ExcepWritestr

ExcepNonstatic
ExcepTypeMismatch
ExcepSubrange
ExcepEmptyDomain
ExcepActualDiscriminant
ExcepParameterType
ExcepResultType
ExcepNotConformable

ExcepNumeric
ExcepIntegerOverflow
ExcepFloatingOverflow
ExcepFloatingUnderflow
ExcepIllegalValue
ExcepPrecision



ExcepVariants
ExcepFixedVariant
ExcepSelectorValue
ExcepDisposeVariant

ExcepOther
ExcepDate
ExcepResultUndefined
ExcepLocalExtension

ExcepSystem
ExcepStackOverflow
ExcepAllocationFailure
ExcepOSFailure
ExcepInitialization
ExcepTermination
ExcepThreads
ExcepLocalLimit

ExcepUser




